Multivariate dynamic intensity peaks‐over‐threshold models
We propose a multivariate dynamic intensity peaks‐over‐threshold model to capture extremes in multivariate return processes. The random occurrence of extremes is modeled by a multivariate dynamic intensity model, while temporal clustering of their size is captured by an autoregressive multiplicative error model. Applying the model to daily returns of three major stock indexes yields strong empirical support for a temporal clustering of both the occurrence and the size of extremes.