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Abstract
While there is abundant evidence demonstrating that residents permanently migrate
in search of locations with cleaner air, there are considerably fewer studies that in-
vestigate if travellers also take short-term trips to reduce their exposure to air pollu-
tion. In this study, we use a complete dataset of flights at Beijing International
Airport to investigate if travel patterns are indeed correlated with air quality-
differences across cities in China. Our identification strategy is aided by instrument-
ing air quality using thermal inversions. We find that a one-unit increase in the Air
Pollution Index of origin over destination city would lead to a 0.36% increase in num-
ber of passengers on the flight. When considered separately by cabin-class, the num-
ber of first-class passengers increased about three-times faster than economy-class.
Using lagged air quality information, we also find that averting-related travel decisions
are most sensitive to destination’s air quality on day-of-travel. This indicates that
flight passengers likely rely on air quality forecast information to make air pollution-
induced travel decisions.
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1. Introduction

There is abundant evidence from various disciplines showing that environmental condi-
tions are significant factors behind decisions to relocate permanently (e.g., Roback, 1982;
Clark et al., 2003; Timmins, 2005; Bayer et al., 2009; Gray and Mueller, 2012; Tan-Soo,
2017; Minale, 2018). The seminal work by Roback (1982) found that a location’s quality-
of-life is partly influenced by climatic factors (such as snowfall, temperature and cloud
conditions), which in turn affect its perceived attractiveness to migrants. Similarly,
Timmins (2005, 2007) showed using general equilibrium models that migration patterns in
Brazil are sensitive to changes in temperature and rainfall. Moving on to more hazardous
environmental conditions, Gray and Mueller (2012) found using reduced-form approach,
that floods increase the probability of within-district migration by around 57% in
Bangladesh, with disproportionate impacts on women and lower-income groups. Lastly,
Bayer et al. (2009), Tan-Soo (2017), and Chen et al. (2019), respectively, found that popu-
lations in the USA, Indonesia and China migrate to other locations within the country to
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avoid high levels of air pollution. A commonality behind all these studies is that they
focused on permanent migration as the behavioural response to adverse environmental
conditions. However, as effective as permanent migration may be in reducing one’s expos-
ure to adverse environmental conditions, these are extremely complex decisions with mul-
tiple considerations and trade-offs to be made (Timmins, 2005; Bayer et al., 2009;
Tan-Soo, 2017). On the other hand, a simpler and less costly option to avoid environmen-
tal harms is to move away for a short period of time.
Compared with permanent migration, short-term movements impose much lower mov-

ing costs on individuals and can be just as equally effective, especially if the opportunity
costs of moving are high and that environmental harms are temporary. However, short-
term movements as behavioural responses to adverse environmental conditions have been
under-studied in the literature, possibly due to data constraints. In this regard, we attempt
to fill this knowledge gap by investigating the extent to which population in China under-
take short-term travels in response to short-term fluctuations in air quality. There are sev-
eral reasons to believe why short-term movements are also an appropriate strategy for
avoiding poor air quality in China.
First, earlier studies on the relationship between air pollution and migration found that

residents from developing countries place large premiums on access to economic opportu-
nities. For example, Tan-Soo (2017) found that without controlling for the positive correl-
ation between air pollution and economic opportunities, Indonesians would voluntarily
move towards places with high air pollution as these are locations with better employment
prospects. Hence, high opportunity costs of moving permanently away from places with
high air pollution could also exist in the Chinese context. Second, while much has been
said about poor air quality in China (and much of the developing world), the nature of the
problem is more varied. For instance, even though Beijing’s average PM2.5 level in 2015
is 79 lg/m3, around eight times higher than World Health Organization’s stipulated safe
level, there were >223 days in 2015 where air quality is within safe levels. Third, unlike
many other countries, domestic migration in China is highly controlled as residents need
to show proof of employment before they are allowed access to local public services, gov-
ernment subsidies, and even be allowed to purchase properties.1 This policy thus act as an
additional level of hindrance for permanent migration in China. It should also be empha-
sized that the purpose of this study is not to compare the effectiveness of short-term move-
ments against permanent migrations to avoid air pollution. Indeed, there are scenarios
(e.g., if severe air pollution is a perennial problem) where permanent migration could be
the better option.
Towards this end, we use a novel and complete dataset of flights load factors (i.e., occu-

pancy rates) to study the relationship between short-term movements and fluctuations in
daily air quality. Just as air pollution and economic opportunities were observed to be
highly correlated in earlier studies of permanent migrations, we encounter the same endo-
geneity issue here. Hence, we deploy an instrumental variable (IV) based on the climatic
phenomenon of thermal inversions to provide an exogenous source of variation for air
quality. In all, we find that the number of passengers on a flight towards the ‘cleaner’ city
increases by about 0.36% for every unit-difference in the air quality between two cities.
When differentiated by cabin-class, it is telling that the marginal impacts of economy and

1 Conversely, while a household could move to another province without proof of employment. In these situations,
the household would not be able to access any public services, such as public education or healthcare.

940 � Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article/20/4/939/5803787 by guest on 02 April 2021



first-class passengers are 0.34% and 0.87%, respectively. We also found that travel deci-
sions to avoid air pollution are likely made using air quality forecasts as the number of
flight passengers are most sensitive to air quality on day-of-travel, rather than at lagged
days.
In all, this study contributes to the literature in the following ways. First, as mentioned,

while there are increasing number of studies showing that permanent migrations respond
to adverse environmental conditions, this is one of the first attempts to empirically exam-
ine the relationship between short-term movements and air pollution. Second, we gain a
deeper understanding on the decision-making mechanisms behind flight travels as averting
behaviours by using lead and lag air quality as regressors, spline regression models for
non-linearities, and air quality at origin and destination cities to differentiate between push
and pull factors. Third, our findings have important implications for both the public and
private sectors (e.g., urban planning, tourism and transportation sectors) as there will be
changes to the utilization of public utilities and private services prompted by short-term
visitors.
The rest of the paper is structured as follows. Section 2 introduces the empirical strategy

and statistical identification of IV strategy. Section 3 provides a description of the datasets
used in this study. Empirical results are presented in Section 4. Finally, we summarize all
findings and discuss their implications in Section 5.

2. Empirical strategy

We estimate the following equation to investigate if air travel patterns are indeed influ-
enced by air quality levels:

ln FPijktð Þ ¼ b0 þ b1 Pjt � Pktð Þ þ Wjt �Wktð Þhþ Dt þ ui þ eijkt: (1)

FPijkt is the number of passengers on flight-code i on day t travelling from city j to city k.
Pit is the daily air pollution index (API) of origin city i on day of departure. Similarly, Pjt

is the daily API of destination city j on day of arrival. Hence, put together, Pjt � Pktð Þ rep-
resent the difference in air quality between origin and destination where a positive
Pjt � Pktð Þ indicates that origin city has lower levels of air pollution compared with destin-
ation city. It should be clarified that even though air quality on the date of travel is used
as the main covariate in our empirical specification, this does not necessarily imply that
the decision to travel are made on day of travel itself. Just as weather forecasts, projec-
tions of future air quality has been made widely available through governmental and other
credible sources in China since at least 2001 (Tong, 2006).2 As such, it is possible that
individuals make travel decisions based on forecasted air quality. For example, if it is fore-
casted that air quality will deteriorate in 5 days’ time, an individual will stand most to
gain by departing on the day that air quality will deteriorate. We will use lag- and lead air
quality to test this decision-making mechanism.
We also include, up to second-order polynomial, a vector of weather controls, W in

similar fashion as the pollution index. These weather controls are temperature, precipita-
tion, sunshine duration, wind speed, relative humidity, and atmospheric pressure. It is

2 Chinese air quality forecasts are available on websites such as the National Meteorological Center (http://www.
nmc.cn/publish/environment/air_pollution-24.html) and weather site (http://tianqi.eastday.com).
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important to include these weather controls as air quality can sometimes be correlated
with climatic factors. For example, we tend to see poorer air quality in northeast China
during winter months, and travel patterns are also independently associated with tempera-
ture. Hence, the estimated impact of air quality on travels may be confounded if climatic
variables are not included as controls. The weather controls are included as polynomials
because unlike air quality-difference, the relationship between climatic factors and travels
may be multi-directional. Dt is included as a vector of date-related fixed effects, that is,
months, year, day-of-week, holidays and holiday-makeup weekends, to account for the
seasonal nature of travels. Lastly, we also include a flight-code fixed effect ui. This fixed
effect controls for all characteristics that are identical to the particular flight-code, such as
origin and destination city, airline, aircraft type and scheduled time of departure and ar-
rival.3 Hence, with the inclusion of flight-code fixed effect, identification of b1 is based
on the air quality-difference within each flight-code. If Chinese residents do indeed use
flight travels as a way to avoid air pollution episodes, we should expect b1 to be positive,
that is, there will be more passengers on a flight if the air quality at origin city is worse
than air quality at destination city.

2.1. Statistical challenges and identification

There are three endogeneity concerns or threats to statistical identification.
First, cities with high level of air pollution tend to be economic centres or cities of

interests that naturally draw in more visitors compared with other locations. Hence, if we
do not take into account of the ‘attractiveness’ of a location, it would seem as though peo-
ple are travelling towards places with high air pollution (Bayer et al., 2009; Tan-Soo,
2017; Freeman et al., 2019). On a similar note, the ‘attractiveness’ of a location could
also be time-varying as cities may concurrently experience temporary changes to number
of visitors and air quality due to hosting of major events or activities. For instance, air pol-
lution in the city of Haikou typically spike during peak tourism period due to an influx of
visitors (Figure A1). On the other hand, Beijing’s air quality ironically improves when
major events of national significance are conducted (e.g., Summer Olympics and 2014
APEC meetings) as the central government imposes temporary bans on all industrial
activities.
The implication is that we may underestimate (or overestimate in the case of Beijing

where major events that draw a lot of visitors are correlated with good air quality) the ex-
tent to which people take on averting behaviours to protect themselves from air pollution.
Second and related, there may also be a simultaneity relationship between air travels

among two cities and their associated air quality difference. That is, suppose air quality of
city A and B are initially similar. However, there are more people subsequently travelling
from city A to city B because city B has say improved transport connectivity or for some
other exogenous reasons. Hence, one may expect the increased travels towards city B
would promote more economic activities, and thus worsen the air quality. In this case, the
reverse causality would cause the coefficient of air quality to be under-estimated.
Third, there is evidence that Chinese city governments manipulated air quality data by

systematically reducing actual readings so that the threshold of ‘polluted’ days will not be

3 For example, CA1501 leaves from Beijing daily at 8:30 a.m. and lands at Shanghai at 10:40 a.m. using a Boeing
777-300ER plane.
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breached (Ghanem and Zhang, 2014). As such, the pollution data used in this study may
also be measured with a systematic error that is correlated with the actual air pollution. If
so, coefficients estimated using the ‘manipulated’ air pollution data may be biased if this
systematic bias is uncorrected.
As such, we address endogeneity concerns of the air pollution variable by using a nat-

ural climatic phenomenon—thermal inversions—as the IV. Generally speaking, tempera-
ture is lower at higher altitudes due to difference in air pressure. Combined with the fact
that cold air is denser than warm air, this phenomenon allows warm air to rise from lower
elevations and circulate throughout the atmosphere (Jacob, 1999). However, due to a con-
fluence of various meteorological factors, thermal inversions—situation where temperature
at higher elevation is instead warmer than temperature at lower elevation—can also occur
(Jacob, 1999; Wu et al., 2014). During such occurrences, the cold air will be trapped at
lower elevations (due to their higher density). The implication is that air pollutants are un-
able to be circulated upwards and thus trapped nearer to ground level, thus deteriorating
air quality (Schwartz, 1994). As thermal inversions are purely meteorological and short-
term phenomenon, it is unlikely that they have any correlation with economic activities or
manipulation of data. More specifically, the IV satisfy the exclusion restriction condition
because thermal inversions only affect flight passengers’ movement through their impacts
on air quality. Because thermal inversions is strongly correlated with air quality and satisfy
the exclusion restriction, there has been increasing usage of thermal inversions as an ex-
ogenous source of variation for air pollution (e.g., Arceo et al., 2016; Hicks et al., 2016;
Chen et al., 2017; Fu et al., 2018; Jans et al., 2018). Figure 1 plots the daily time trend of
thermal inversion frequency and API from 1 March 2008 to 30 April 2010, the course of
our study period. The blue bar represents average API for all 60 cities across every day,
while the red line represents average number of thermal inversions in the same cities and
days. The figure shows a strong positive correlation between daily thermal inversions and
API. Hence, using thermal inversion as the IV, we propose to estimate a two-stage least
squares (2SLS) model to measure the causal effect of air pollution on flight passengers.
This model can be written as follows:

Pjt � Pktð Þ ¼ a0 þ a1 Tjt � Tktð Þ þ Wjt �Wktð Þhþ Dt þ ui þ lijkt: (2)

ln FPijktð Þ ¼ b0 þ b1
^Pjt � Pkt

� �
þ Wjt �Wktð Þhþ Dt þ ui þ vijkt: (10Þ

Equation (2) is the first stage of the 2SLS estimation and we are using daily thermal in-
version counts, Tjt and Tkt as the instrument variables for API-difference. Equation (10) is
simply a re-writing of Equation (1) where API-difference is replaced by its instrumented
counterpart.
There are however two empirical concerns with using thermal inversions as an exogen-

ous source of variation for air quality. First, due to it being a climatic phenomenon, ther-
mal inversion is associated with lower elevations’ climatic patterns such as low
temperature and wind velocity (Chen et al., 2017). As such, we also control for a host of
climatic factors (temperature, precipitation, sunshine duration, wind force, relative humid-
ity, and atmospheric pressure) to further isolate the impact of thermal inversions on air
quality, and thus flight passengers. For comparisons, we also estimate a model without
any weather controls. Second, as thermal inversions occurrences are more favoured in cer-
tain locations than others (e.g., valley-type areas), it is possible that people of different
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preference types migrate or systematically sort themselves along the same variation as
thermal inversions. Flight-code-fixed effects (which essentially act as location-fixed
effects) would thus control for any sorting behaviours and purely exploit variation in ther-
mal inversion over time.

3. Data

3.1. Data sources

The empirical analysis is conducted by combining four different datasets.

3.1.1. Flights information

First, we make use of a dataset consisting of flights towards and from Beijing Capital
International Airport (IATA code: PEK). From this dataset, we know (i) the number of
passengers on each flight, (ii) airline and aircraft information, (iii) destination and origin
city, and (iv) scheduled and actual arrival and departure time. This dataset spans from 1
March 2008 to 20 April 2010, consisting of 499,180 domestic direct flights that either
travelled towards or departed from PEK.4 These flights belong to 115 unique city routes
or 122 unique airport routes (Figure 2 shows the flights connectivity of Beijing Capital
Airport and the average number of daily passengers for each flight-route).5 Of the unique

Figure 1. Correlations between API and thermal inversions. This figure plots daily API and aver-
age daily counts of thermal inversions for all 60 (destination or origin) cities from 1 March 2008
to 30 April 2010. The plot is created using local polynomial smoothing function. See Figure A3
for the direct scatter plots.

4 We removed all multiple-legs flights (i.e., flights that travel from origin to intermediate to destination in the same
journey) from the sample as it is unclear how many passengers alight and boarded at the intermediate city.

5 There are several cities with more than one airport.
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city routes, 56 of these routes have Beijing as the arrival city and 59 routes have Beijing
as the departure city. These 499,180 flights thus belong to 17 different airlines, operating
32 different types of aircrafts, and servicing 1743 unique flight-codes.

3.1.2. Pollution data

Second, daily air pollution data are obtained from the website of the China National
Environmental Monitoring Center (CNEMC).6 From 2008 to 2010, the Chinese Ministry
of Environmental Protection (MEP) reports daily API for 120 major Chinese cities. The
API is a composite index consisting of primary air pollutants (PM10, SO2, and NO2), and
thus indicative of the overall air quality. This index ranges from 0 to 500, where larger
numbers indicate worse air quality. The MEP defines six levels of API, with 0–50 for ex-
cellent air quality, 51–100 for good air quality, 101–150 for lightly polluted air, 151–200
for moderately polluted air, 201–300 for heavily polluted air, and >300 for severely pol-
luted air.7

3.1.3. Climatic data

Weather data are obtained from the China Meteorological Data Service Center (CMDC),
which is affiliated to the National Meteorological Information Center of China.8 The
CMDC records daily maximum, minimum, and average temperatures, precipitation, rela-
tive humidity, wind speed and sunshine duration for 820 weather stations in China. We

Figure 2. Number of flight passengers (daily). This figure depicts the average daily number of
flight passengers between Chinese cities from 1 March 2008 to 30 April 2010. These numbers are
taken from direct domestic flights that either depart from or arrive at Beijing Capital International
Airport (PEK).

6 The data can be obtained from http://www.cnemc.cn/.
7 See http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/W020120410332725219541.pdf for detailed

API calculation formula and explanation.
8 The data can be obtained from http://data.cma.cn/.
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use the inverse-distance weighting (IDW) method to generate city-level weather statistic
(Currie and Neidell, 2005; Deschenes and Greenstone, 2007; Schlenker and Walker,
2015). Essentially, we draw a 100 km radius around the centroid of the city and take the
weighted average of climate data of all stations contained within this radius.9 In all, the
weather controls include second order polynomials in daily weather conditions, including
temperature, precipitation, sunshine duration, wind force, relative humidity and atmospheric
pressure.

3.1.4. Temperature inversion data

Lastly, daily thermal inversion count (at 6-h intervals) are computed using satellite image-
ries from the MERRA-2 satellite released by the National Aeronautics and Space
Administration (NASA) of the USA.10 Over the course of a day, the MERRA-2 records
temperature at four regular intervals for various elevations. The grid size used by
MERRA-2 is 0.5 by 0.625� (0.5� is around 55 km at the Equator and shorter towards the
poles). As such, we first spatially match each city to their respective grid(s) and compute
average temperature. Next, a thermal inversion is counted when the temperature in first at-
mospheric layer (110 m) is lower than temperature in the second layer (320 m). In this re-
gard, there are a maximum of four thermal inversions in a day and minimum of zero.11

3.2. Descriptive statistics

The descriptive statistics are collected in Tables 1 and 2. First, there are around 6.7 daily
flights for each unique city routes, with the most popular routes having more than 40 daily
flights (Figure A2). The average number of passengers per flight is around 144 with an
occupancy rate of 65%, and the average economy-class ticket is priced at 586 CNY
(around US$90). When considered separately by cabin-class, there are on average 138
economy-class passengers and six first-class passengers on a flight.
Air quality is quantified using the Chinese API—a composite metric designed to take

into account of three major air pollutants (i.e., particulate matters, sulfur dioxide and ni-
trous oxide). API at origin (destination) city on day of departure (arrival) averages at
around 80 (75). For reference, the average annual API for Beijing in 2008 is around 87.6.
Next, the average API difference between origin and destination is around 5.3, and there
is wide variation as API-difference ranges from �467 to 467 (Figure 3 shows a histogram
of the daily variation). As the API is a composite metric, its value is mostly driven by the
pollutant with the highest level at time of measurement. In this regard, we also present the
average API when its value is driven by particulate matters (PM10). Compared with over-
all API, PM-dominated API is about 10 units higher for both origin and destination cities.
Lastly, thermal inversion is a count variable and measured at 6-h interval daily. Out of a
maximum of four inversions per day, there are an average of 0.6 thermal inversions

9 Different radii distance is used in the robustness checks to ensure results are not driven by this assumption.
10 The data can be downloaded at https://disc.sci.gsfc.nasa.gov/uui/datasets/M2I6NPANA\_V5.12.4/summary?

keywords=\%22MERRA-2\%22\%20M2I6NPANA\&start¼1920-01-01\&end¼2017-01-16.
11 We also conduct a robustness check by coding inversions using differences in temperature between the first and

third layers (540 m). We then aggregate the number of thermal inversions by each date and match to cities on
the flight routes.
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observed daily. Thermal inversions can also be defined as a binary variable if we aggre-
gate temperature to a daily level. In this regard, there is a 0.5% chance of observing ther-
mal inversion on any particular day.12

4. Results

4.1. Baseline results

Results for the baseline estimation are collected in Tables 3 and 4. Using a 2SLS model
with thermal inversion as the IV, we find that in the most basic model with no control var-
iables and fixed effects, the number of passengers on an average flight increased by
around 0.18% for every unit increase in air pollution of origin city over destination’s API
(Table 4, Column 1). In other words, this means that flights from a more-polluted location
to a less-polluted one has more passengers. The impact of air pollution on number of pas-
sengers increases following the gradual inclusion of controls, i.e., flight-code fixed effects,
weather controls, date-fixed effects and population weights (Table 4, Columns 2–5). In the
full specification with all controls and fixed effects included, the marginal impact of air
quality differential increases to around 0.36% (Table 4, Column 5). To examine if the IV
strategy is working as intended, we can see that the first stage KP-F statistics is high at
around 40–80 for the various model specifications (Table 3). This means that thermal in-
version is a good predictor of air quality. Second, results in Table 4, Panel B confirm the
nature of our endogeneity concerns as the OLS coefficients are consistently smaller (and
even negative) compared with their instrumented counterparts (Table 4, Panel A).
Negative API-difference coefficients can be interpreted as that flights travelling from low-
pollution to high-pollution locations are carrying more passengers. This counter-intuitive
result of moving towards high-pollution locations has been observed in multiple air quality
valuation studies in low-and-middle income settings such as Indonesia and China (Tan-
Soo, 2017; Freeman et al., 2019). The most likely reason is because highly polluted loca-
tions tend to have more economic activities and larger population base, thus making them
more popular destinations. Hence, we would have under-estimated the extent to which

Table 1. Number of city pairs, airlines, types, routes and flights in our research sample

Total Arrival PEK Departure PEK
(1) (2) (3)

Number of
Fly routes 115 56 59
Airport routes 122 59 63
Airline companies 17 13 16
Aircraft types 32 27 31
Flight codes 1743 709 1058
Number of observations 499,180 335,414 163,766

Number of sample cities¼ 60. Sample period is from 1 March 2008 to 30 April 2010.

12 Descriptive statistics for climatic variables are reported in Table A1.
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people use air travels to escape from air pollution if we did not control for this confound-
ing effect. In all, the baseline results confirm that flights generally have more passengers
if they are originating from a location with worse air quality than the destinations.
Next, we examine if air quality at either origin or destination are stronger factors in

influencing flight travels, i.e., whether push or pull factors matter more. To do so, air qual-
ity at origin and destination cities are included as separate regressors (Table 5, Column 2).
Holding air quality at destination city constant, the marginal impact of increase in API at

Figure 3. Histogram of API-difference. This figure plots the histogram of API-difference across
the entire sample.

Table 3. First-stage estimates

Dependent variable: API-difference

(1) (2) (3) (4) (5)

TINum-difference 4.4995*** 4.3513*** 3.7755*** 3.8300*** 3.3480***
(0.5324) (0.4772) (0.4908) (0.4935) (0.5278)

Flight FE No Yes Yes Yes Yes
Weather controls No No Yes Yes Yes
Date FEs No No No Yes Yes
Population weight No No No No Origin
First-stage F-stat. 71.40 83.14 434.1 428.5 501.5

Total observations¼ 499,180; number of flight-code¼1410. Weather controls include second order polynomials in
daily weather conditions, including temperature, precipitation, sunshine duration, wind force, relative humidity
and atmospheric pressure. All climatic covariates are also included as difference between the origin city and the
destination city. Date fixed effects include dummies for weekdays, holidays and holiday-makeup. Observations in
Column (5) are weighted according to the population of the flight origin city. Standard errors are clustered by
1410 flight-code and are listed in parentheses.
***p< 0.01, **p< 0.05, *p< 0.1.
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Table 4. Second-stage estimates

Dependent variable: Log(passengers)

(1) (2) (3) (4) (5)

Panel A: IV estimates (2SLS)
API-difference 0.0018** 0.0017*** 0.0023*** 0.0027*** 0.0036***

(0.0007) (0.0005) (0.0007) (0.0007) (0.0008)
KP F-statistics 71.40 83.14 59.18 60.24 40.24
Panel B: OLS comparison
API-difference 0.0000 �0.0001*** �0.0001*** �0.0001*** �0.0001***

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)
R-squared 0.0000 0.3892 0.3904 0.4072 0.4445
Flight FE No Yes Yes Yes Yes
Weather controls No No Yes Yes Yes
Date FEs No No No Yes Yes
Population weight No No No No Origin

Total observations¼ 499,180; number of flight-code¼1410. Weather controls include second-order polynomials in
daily weather conditions, including temperature, precipitation, sunshine duration, wind force, relative humidity
and atmospheric pressure. All climatic covariates are also included as difference between the origin city and the
destination city. Date fixed effects include dummies for weekdays, holidays and holiday-makeup. Observations in
Column (5) are weighted according to the population of the flight origin city. Standard errors are clustered by
1410 flight-code and are listed in parentheses.
***p< 0.01, **p< 0.05, *p< 0.1.

Table 5. Origin and destination

Dependent variable: Log(passengers)

Baseline Both origin- and
destination-based pollution

Flights
departure PEK

Flights
arrival PEK

(1) (2) (3) (4)

API-difference 0.0036*** 0.0031*** 0.0005
(0.0008) (0.0009) (0.0017)

API_O 0.0037***
(0.0007)

API_D �0.0030***
(0.0009)

IV-Number of inversions TINum-difference TINum_O and
TINum_D

TINum-
difference

TINum-
difference

KP F-statistics 40.24 23.47 29.88 55.72
Observations 499,180 499,180 335,414 163,766
Number of flights 1410 1410 850 570
F-test between API_O and API_D Coef.: 0.0007**

(SE: 0.0003)

All specifications contain the full set of controls and fixed effects as in the baseline specification, that is, Column
(5) of Table 4. The climatic covariates are included in similar fashion as API. Standard errors are clustered by
flight-code and are listed in parentheses;
***p< 0.01, **p< 0.05, *p< 0.1.
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origin city increases number of passengers on each flight by around 0.37%. On the other
hand, the coefficient for API at destination is smaller in magnitude at �0.3%. An F-test
comparison of these two coefficients confirms this observation as the coefficient for API
at origin city is statistically larger in magnitude than the coefficient for API at destination
city. This finding provides evidence that the results observed so far are, to a larger extent
driven by averting behaviours from places with poor air quality. As our dataset is centred
around flights at PEK, we can test specifically the ‘attractiveness’ of Beijing city as a des-
tination for short-term travels to avoid air pollution. For flights departing PEK, there are
an additional 0.31% passengers per flight for every unit-increase in API over the destin-
ation city (Table 5, Column (3)). Conversely, we do not observe a statistically significant
API coefficient for flights entering PEK (Table 5, Column (4)). This means that Beijing
(even on low pollution days) is not generally considered as a location for clean air.

4.2. Decision-making mechanisms

We used air quality on day-of-travel as the main covariate in our empirical specification
with the assumption that travellers rely on air quality forecasts to make decisions.
However, it is also possible that individuals make air pollution-avoidance travel decisions
based on air quality from days before the travel date. If decisions are indeed made in the
latter way, we would then expect to see a stronger or at least similar effect of lagged API-
difference on number of flight passengers. We test this hypothesis in two ways. First, we
use the average of the current day API-difference and its various days lag as the main
covariate. From the results shown in Figure 4, the coefficient for API-difference is largest
for current day and decreases accordingly as API from subsequent lagged-days are com-
bined. Second, destination’s and origin’s air quality are included separately where destina-
tion’s API is fixed on day of departure while origin’s API is allowed to take on values at
various daily lags k. From Table 6, Panel A, we can see that coefficients for API closer to
the travel date are the largest. On the other hand, we fix origin’s API on day of departure
and allow destination’s API to take on values at various daily leads k (Table 6, Panel B).
We now see that only coefficients for current-day and up to 2-day lead API are large and
statistically significant, indicating that travellers are also using forecast information to
choose destinations.
In all, these results point to that air pollution-avoidance travel decisions are most likely

made using air quality on day of travel. The intuitive explanation is that for the traveller
to fully yield the benefits of avoiding pollution, he/she should ideally depart on the day
where air pollution is worst at the home city and arrive at a city when air quality is good.
This decision-making mechanism is especially helped by the availability of daily air qual-
ity forecasts provided by the Chinese government through various media reports since at
least 2001 (Tong, 2006).13

4.3. Robustness checks

In this section, we undertake a series of robustness tests to ensure that the baseline results
are not driven by modeling assumptions.

13 According to Tong (2006), these forecasts are on average around 78% accurate when evaluated at the category
level.
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First, the identification strategy is partially altered where the fixed effects are introduced
at the city by month-of-year level (previously at flight-code level). The main purpose of
these fixed effects is to control for any city-unique temporal factors that may also con-
found the relationship between air quality and travel decisions, e.g., major events such as
the 2008 Olympics. Column (1) of Table 7 shows that the coefficient for API-difference at
0.37% is similar to that of the baseline results, hence confirming that our baseline results
were not driven by confounding temporal factors. Similarly, fixed effects are included at
the most granular level: date. In this regard, statistical identification is now obtained from
variation in API-difference and flight passengers on the same date (Table 7, Column (2)).
The results with the inclusion of daily fixed effects are again highly similar to the baseline
results.
Second, we test for the sensitivity of the standard errors by clustering at different levels.

Columns (3) and (4) of Table 7 show clustered standard errors at the city-level, and route-
and date-level, respectively. The significance level of the coefficient of API-difference did
not change from the baseline in both instances.
Third, we modify the definition of the IV. Thermal inversion was originally defined as

the number of times in which inverse temperature gradient between ground level and the
next higher level of 320 m is observed daily at four intervals of 6-h each. In Column (5),
we compare ground level and the 540 m layer instead. This is a more stringent definition
of thermal inversion as temperature at higher altitudes tend to be cooler. In Column (6),
we aggregate temperature to daily level and thus thermal inversion is defined as binary
variable. In both cases, the coefficient for air quality difference remains stable at around

Figure 4. Coefficients of average lagged-API-difference on flight passengers. This figure depicts
the impacts of API-difference on Log(passengers) by various exposure windows. API-difference is
calculated using the average from the past days until the current day. The circle denotes the point
estimate, while the whisker denotes the 95% confidence interval.
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0.34–0.35%. Hence, this suggests that the baseline results are not driven by how the IV is
defined.
Fourth, the data are separated according to the dominant air pollutant. Recall that the

main covariate, API, is essentially a composite score of various air pollutants. In Column
(7), we limit the sample to only between city-pairs where dominant air pollutant is particu-
late matters (or more commonly known as PM) for both cities. On the other hand, the re-
gression model in Column (8) consists of observations where the main pollutants for both
cities are not concurrently particulate matters. We can see that the result in Column (7)—
where particulate matters is the main air pollutant—is closer to the baseline results com-
pared with Column (8). One possible explanation for the different estimation results is that
days where air quality is exceptionally bad are also when PM is the dominant pollutant
(as seen in the much larger average API-differential). As such, the larger effects observed
for PM-dominant days most likely reflect a non-linear relationship between air quality-
differential and travel behaviours, which we will examine in further detail in a latter
section.
Fifth, weather controls are excluded and included as cubic functions, respectively. API-

difference has a smaller coefficient (0.028%) in the specification where weather controls
are excluded (Table 7, Column (9)). This suggests that climatic factors are correlated with
API-difference and affect travel movements in an opposite direction. On the other hand,
the coefficient for API-difference increases to around 0.4% when weather covariates are
included in a cubic manner (Table 7, Column (10)).
Sixth, we aggregate observations from the current flight-code level to daily route-level

to investigate if the earlier results were mostly driven by substitution between different
flights. For instance, it could be the case that the total number of passengers between two
cities remained the same as passengers selectively choose certain flights over others serv-
ing the same route. The estimated coefficient for API-difference at the route-level is larger
at around 0.49% suggesting that earlier results are not driven by substitution patterns
(Table 7, Column (11)).
Seventh, instead of the number of passengers, we use the occupancy rate as the depend-

ent variable (Table 7, Column (12)). Similar to the baseline specification, the
API-difference coefficient is positive and statistically significant. The marginal impact of
API-difference is now a 0.19 increase in occupancy rate of a flight travelling from a more
polluted city to a less polluted one.
Eighth, it is possible that flights are more likely to be cancelled or delayed at times of

poor air quality. If so, cities with poor air quality may see a lower arrival rate, thus biasing
our estimates upwards.14 We check for this possibility in two ways. First, using the same
baseline specification, the dependent variable is now recorded as a binary observation
which takes the value of 1 if the flight is delayed, and zero otherwise. Table A2, Column
(1) shows no statistical relationship between probability of a flight being delay with the
API-difference. API is weakly significant for departure flights and not statistically signifi-
cant for arrival flights (Table A2, Columns (2) and (3)). Second, we investigate if the can-
celled flights are correlated with API-difference by aggregating the total number of daily
completed flights at the route-level. Similarly, we do not observe any results that suggest
flights are more likely to be cancelled when API is high at origin or destination

14 However, going by this logic, it is also possible that flights from the more polluted city are more likely to be
delayed or cancelled, thus biasing estimates downwards.
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(Table A2, Column (4)–(6)). Third, the baseline model is re-estimated by including flight
delays and total number of daily flights as additional covariates. The coefficient for API-
difference is similar to the baseline result (Table A2, Column (7)).
Ninth, we do not observe in the dataset the actual origin or destination cities. For in-

stance, while we observe the total number of passengers travelling from Beijing to
Shanghai, a proportion of these travellers could move on to secondary city from Shanghai.
In such cases, our results may be over- or under-estimated depending on the similarity of
API between the observed and actual destination (or origin). Towards this end, even if we
do not have full information on passengers’ itineraries, we can conduct an approximate
test by only using observations on flights from Beijing to smaller cities (defined as non-
provincial capital cities). The rationale is that due to their lower connectivity, passengers
typically do not go to these smaller cities to continue the next leg of their journeys.
Hence, we are reasonably sure these passengers are travelling towards their final destin-
ation cities. The results collected in Table A3, Column (2) show that coefficient for API-
difference, using only travels towards smaller cities, is around 0.6% which is much larger
than the baseline. The most likely explanation is that smaller cities tend to have better air
quality, and thus this has the effect of magnifying the API coefficient. In comparison, we
also estimated separately for flights travelling only to large cities (defined as provincial
capital cities). The coefficient is understandably smaller at 0.32% as we can see that the
average API-difference is larger for small cities compared with large cities (Table A3,
Column (3)). As our full sample consists of both travel-types and it is likely that some
passengers travelling to larger cities will go on to smaller cities, it is likely that our base-
line results are under-estimated.
Lastly, we conduct a falsification test by using passengers on international flights as the

dependent variable (Table A4). While it is true that there are many international locations
with better air quality compared with China, it is unlikely that many Chinese residents
would use international travels as a means to escape from air pollution for two reasons.
First, there are many cheaper and nearer domestic locations. Second, Chinese passport
holders are required to obtain a travel visa for entry to most countries. Hence, given the
daily variability in air quality and the lengthy process in obtaining travel visas, it is unlike-
ly international locations are commonly used for avoiding poor air quality at home city.
Again, we do not find any effects of air quality on international flights travellers.15

4.4. Heterogeneity analysis

In this section, we examine how the relationship between flights and air quality differs by
seat-types, and various temporal and spatial constructs.

4.4.1. Cabin class

While total number of passengers were used in the prior analyses, it is important to exam-
ine if there are any differential impacts according to cabin-class, that is, economy- and
first-class passengers. The coefficient for economy-class passengers is 0.34% and highly
similar to the baseline estimate (Table 8). However, there is a much larger impact for first-
class seats at 0.87%. One interpretation of these results is that not only are short-term

15 We could not use API-difference as the covariate for this analysis because there is no corresponding information
on API for international locations.
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travels used as a strategy to avoid air pollution, but this strategy is likely to be more high-
ly utilized by those with higher income.

4.4.2. Temporal variation

The data are divided according to the flight take-off time: (midnight) 12 am to 5 am inclu-
sive; (morning) 6 am to 11 am inclusive; (afternoon) 12 pm to 5 pm inclusive; (evening)
6 pm to 11 pm inclusive. First, we see that the coefficient for earliest time period is not
significant (Table A5, Panel A). While this suggests that people are not taking flights dur-
ing this time period to escape from bad air pollution, it should also be noted that the sam-
ple size for this time period is much smaller than the others as there are very few flights
operating during these hours due to regulations. The coefficient for the next time period of
6 am–11 am (0.27%) is smaller than the coefficients for afternoon (12 pm–5 pm) and even-
ing (6 pm–11 pm) (both 0.39%). One possible explanation is that morning flights are typic-
ally in higher demand compared with other hours.
Second, we divide the data according to the four climatic seasons (Table A5, Panel B).

The coefficient for winter (typically when air quality is at its worst) is largest at 0.65%
while the coefficient for summer (typically when air quality is at its best) is statistically in-
significant. On the other hand, the coefficients for spring and autumn are roughly similar
at around 0.20–0.25%. These results appear to suggest that Chinese residents are more
sensitive to air quality in winter seasons. One possible explanation is due to projection
biases where Chen et al. (2019) showed that Chinese residents’ marginal willingness-to-
pay (MWTP) for air quality improvements is affected by the most current air quality.
Another interpretation of this result is that Chinese residents display non-linear responses
towards air pollution where the propensity to take on averting behaviours increases more
than proportional as air quality worsens. We further examine the possibility of a non-
linear response in a later section.

Table 8. Heterogeneous analysis: by cabin

Dependent variable Log(passengers)

Total Economy class First class
(1) (2) (3)

API-difference 0.0036*** 0.0034*** 0.0087***
(0.0008) (0.0008) (0.0015)

Observations 499,180 499,180 494,023
Flight FE Yes Yes Yes
Weather controls Yes Yes Yes
Date FEs Yes Yes Yes
Population weight Origin Origin Origin
KP F-statistics 40.24 40.24 40.77

Weather controls include second-order polynomials in daily weather conditions, including temperature, precipita-
tion, sunshine duration, wind force, relative humidity and atmospheric pressure. All climatic covariates are also
included as difference between the origin city and the destination city. Date-fixed effects include dummies for
weekdays, holidays and holiday-makeup. Regressions are weighted according to the population of the flight origin
city. Standard errors are clustered by flight-code and are listed in parentheses;
***p< 0.01, **p< 0.05, *p< 0.1.
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Third, we split the data into three 2-month periods (March and April).16 The rationale
for this demarcation is to examine if the propensity to avoid air pollution using flight trav-
els has increased over the years due to rising income and elevated awareness of the dan-
gers of air pollution. The results shown in Table A5, Panel C confirm our hypothesis as
the API-difference coefficient is positive and not statistically significant for 2008.
However, the coefficient became statistically significant for 2009 travels, and doubled in
magnitude while remaining statistically significant for 2010 travels. Given that general
awareness of air pollution has been increasing steadily in the ensuing years, it is likely
that these results are a lower bound of current behaviours (Johnson et al., 2017).

4.4.3. Spatial variation

In this sub-section, we now investigate if travels are induced by geographical difference.
First, we distinguish cities according to their ‘winter heating’ status. There is a long-
standing government policy in China where cities north of the Huai river will receive free
heating coals in the winter.17 As a result, air quality during winter tend to be comparative-
ly worse in these cities that receive free heat (Chen et al., 2013). Columns (1) and (3) in
Panel A of Table A6 examine travels towards cities that are currently receiving heating at
time of travels. The API-difference coefficient is not statistically significant in both col-
umns. Conversely, Columns (2) and (4) examine travels towards cities that are not current-
ly receiving free heat. Both results are positive and statistically significant. In particular,
we see more much travels (marginal impact of API-difference: 0.51%) taking place from
cities with free winter heat (Table A6, Panel A, Column (2)). Movements from non-winter
heating cities to other non-winter heating cities are somewhat smaller at around 0.15% per
unit of API-difference. In all, this suggests that travel movements towards cities while
receiving free heat are generally not motivated by averting behaviours.
Second, we split up the data into three quantiles according to distances of flight route.

The results in Table A6, Panel B show clearly that travels between cities <900 km apart
are not likely to be induced by air quality difference as the coefficient for AQI difference
is negative and not statistically significant. On the other hand, the coefficient for AQI dif-
ference between cities of between 900 to 1400 km apart is now positive, but not statistical-
ly significant. Lastly, the coefficient for AQI difference between cities of at least 1400 km
apart is at 0.17% and is statistically significant. These results suggest that Chinese resi-
dents tend to choose locations that are far from their origin cities when using flights as the
means to avoid air pollution. This is not surprising as air travel is currently the most feas-
ible and cost-effective way of travelling long distances.

4.5 Nonlinearities

Earlier results showed that there may be nonlinear responses towards air pollution
where propensity to engage in averting behaviours increase more than proportional to the
deterioration in air quality. In this section, we investigate nonlinear responses towards to

16 The reason why we chose March and April is because these are the only 2 months where we can obtain 3 years
of data (i.e., 2008–2010).

17 There is also a temporal variation in effect here as different cities enter ‘winter’ season at different time.
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the air quality differential by introducing a spline term. Equation (1) can thus be re-written
as:

ln FPijktð Þ ¼ b0 þ b1 Pit � Pjtð Þ þ b2 Pit � Pjtð Þ � j½ � � I Pit � Pjtð Þ � jð Þ þ Wit �Wjtð Þh
þ Dt þ uijk þ eijkt:

(3)

First, j represents the point at which nonlinearity is assumed to occur. Second, b1 is
now interpreted as the marginal effect of API-difference on number of passengers when
the API-difference is numerically smaller than j. Conversely, b1 þ b2 is the marginal ef-
fect of API-difference on flight occupancy rate when API-difference is larger than or equal
to the numerical value of j. Hence, a non-zero b2 provides evidence of non-linear
responses. Since it is a matter of empirical investigation the point or range at which non-
linearity occurs, we estimate different versions of Equation (3) using the entire range of
API-difference or Pit � Pjtð Þ. The results are presented in Figure 5 and Table A7. The first
point on the x-axis of Figure 5 shows the associated coefficients (b1 and b1 þ b2) when j
is set at �125 (i.e., origin’s air quality is better than destination’s air quality), and j
increases in value as we move along the x-axis. Figure 5 shows that the estimated magni-
tude of b1 is fairly similar across all j at around 0.3%. However, b1 only start turning sig-
nificant when API-difference approaches positive. This is because b1 measures the
marginal impact of API-difference at values lower than j. Hence, it is unlikely that air
quality would be a motivation for travels when air quality at origin city is better than des-
tination city. Second, we see that b1 þ b2 is generally larger than b1. This suggests evi-
dence of non-linearities as b1 þ b2 measures the marginal impact of API-difference above

Figure 5. Nonlinear impacts using spline regression. This figure shows the marginal impact of
API-difference on Log(passengers) impact and its corresponding 95% confidence interval at
ascending knots of API-difference on a spline regression. The blue dots and red dots represent
marginal impacts for observations where API-difference is smaller and larger than the knot,
respectively.
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j. Figure 5 shows b1 þ b2 being on an increasing trend as API-difference increases in
value and turned statistically significant at the 0.05 level at around j ¼ �75. The increas-
ing trend indicate that the population will increasingly use flight travels as a means for
averting behaviours as air quality at origin city worsens compared with destination cities.
At its largest, b1 þ b2 measures at around 0.8%, which is twice as large as our baseline
estimate.

5. Conclusions

In the absence of stringent government enforcement and regulations against polluting
activities, private citizens will need to take on actions to protect themselves from environ-
mental harms. Earlier studies found that long-term migration is a viable and effective strat-
egy as individuals move to places with lower levels of environmental hazards (Timmins,
2005; Tan-Soo, 2017). Here, we use information on air travels at Beijing Capital
International Airport to assess if short-term travel patterns are affected by short-term differ-
ences in air quality between cities. Towards this end, we find robust evidence that Chinese
residents use air travels to flee from air pollution, where a one-unit difference in API be-
tween two cities leads to an increase in 0.36% in number of passengers on a plane leaving
for the cleaner city. Due to the endogeneity between air quality and the ‘attractiveness’ of
a location, our empirical strategy necessitates the usage of daily thermal inversion inciden-
ces as an IV for air quality. Using a simple back-of-the-envelope calculation, our baseline
results thus imply that for a unit increase in Beijing’s average annual API (around 86.4
from our dataset), there would be approximately 92,671 additional flight passengers taking
air pollution-induced travels from PEK annually.18

When considered across spatial and temporal dimensions, we see that (i) passenger oc-
cupancy on afternoon and evening flights are more sensitive to air quality-differences, (ii)
higher sensitivity towards air pollution during winter months, (iii) increasing sensitivity to-
wards air quality-difference in later years, and (iv) people are more likely to travel to cities
at least 1000 km away and less likely to travel to locations that are in winter-heating sea-
son. Results from a spline model confirm non-linear responses as the marginal impact of
air quality differential increases with larger disparity in API between cities. Using lagged
air quality, we also find the number of passengers on a flight is most sensitive to air qual-
ity on the day-of-travel. As it is unlikely that flights are booked on the day-of-departure,
this implies that Chinese residents rely on air quality forecasts to plan air pollution-
avoidance trips. Lastly, we also show that for the same flight, first-class seats are filled up
around three times faster than economy-class’. As all passengers on the same flight are
travelling to the same destination (and thus experience the same API-difference), the dif-
ferent results between first-class and economy-class imply that the former group have a
much higher utility gain from such short-term strategies.
When combined with the broader literature on air pollution, our findings add to the ar-

senal of strategies that Chinese residents have been documented to utilize to reduce their
exposure to air pollution, e.g., permanent migration, air purifiers, and face-masks (e.g., Ito
and Zhang, 2016; Barwick et al., 2017; Sun et al., 2017; Zhang and Mu, 2017). Future
work should thus attempt to correlate these strategies with noticeable socioeconomic status
to gather further insights. Finally, it should be noted that our results are obtained from

18 This is calculated by 365 days � 59 routes � 8.33 daily flights/route � 143.5 passengers/flight � 0.36%.
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flights centred around Beijing Capital International airport (the largest airport in China by
passenger loads) from the years 2008 to 2010. First, this means that we should be cautious
in extending findings from this study to flights at other airports in China. Second, income
and household wealth in China were considerably lower in this period compared to now.
Similarly, knowledge on the harms of air pollution were not as widespread. If we were to
conduct this study in current conditions where income has risen, knowledge on air pollu-
tion has increased, and long-range transport options such as high-speed train are more ac-
cessible and cheaper, it is likely that we will find larger impacts of air quality on short-
term travels.
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Appendix

Figure A1. Temporal trends of air quality in representative Chinese cities. This figure depicts the
time trend (weekly average) of API in Haikou (A) and Beijing (B) during our study period. The
shadow areas denote special days that vary by city and by date.
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Figure A3. Positive correlation between air pollution index (API) and thermal inversions (daily
plot).

Figure A2. Daily average number of flights in Beijing Capital Airport. Flights include both ar-
rival and departure BEK. Data period March 2008–May 2010.
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Table A1. Summary statistics for weather variables

Variable Definition Mean SD Min Max

Origin-based only
Temperature_O 0.1�C 126.86 112.79 �302.75 347.99
Precipitation_O 0.1 mm 19.24 67.53 0.00 2604.51
Sunshine duration_O 0.1 h 60.92 38.29 0.00 146.67
Wind speed_O 0.1 m/s 21.92 8.67 0.31 118.27
Relative humidity_O % 59.66 18.34 11.28 99.89
Atmospheric pressure_O 0.1 hPa 9935.99 371.05 7526.13 10,379.29

Destination-based only
Temperature_D 0.1�C 139.72 109.60 �302.75 347.99
Precipitation_D 0.1 mm 23.98 81.22 0.00 2604.51
Sunshine duration_D 0.1 h 56.29 39.45 0.00 146.67
Wind speed_D 0.1 m/s 22.49 10.12 0.05 118.27
Relative humidity_D % 64.19 17.87 11.28 99.92
Atmospheric pressure_D 0.1 hPa 9851.96 478.99 6511.61 10,382.99

Difference between origin and destination
Temperature-diff 0.1�C �12.86 83.44 �381.55 381.55
Precipitation-diff 0.1 mm �4.74 102.73 �2604.51 2604.51
Sunshine duration-diff 0.1 h 4.63 52.22 �145.82 145.82
Wind speed-diff 0.1 m/s �0.57 12.27 �102.97 102.97
Relative humidity-diff % �4.54 24.14 �80.60 77.34
Atmospheric pressure-diff 0.1 hPa 84.03 621.13 �2582.37 3676.75

Total observations¼ 499,180; number of flight-code¼ 1410.

Table A2. Flight delays and cancelation

Dep. var. Flight delays (flight-date) Flight number (route-date) Log
(passengers)

Total Departure
PEK

Arrival
PEK

Total Departure
PEK

Arrival
PEK

Total

(1) (2) (3) (4) (5) (6) (7)

API-difference 0.0017 0.0029* �0.0014 0.0001 0.0024 0.0012 0.0035***
(0.0014) (0.0017) (0.0030) (0.0030) (0.0034) (0.0033) (0.0008)

Flight number 0.0089***
(0.0014)

Flight delays �0.0131***
(0.0017)

Observations 499,180 335,414 163,766 74,131 40,294 33,837 499,180
Number of flights 1410 850 570 NA NA NA 1410
Number of routes NA NA NA 114 59 55 114
KP F-statistics 40.24 29.88 55.72 53.73 40.36 32.80 40.46

Columns (1)–(3) and (4) contain the full set of controls and fixed effects, and are weighted according to the
population of the flight origin city as in the baseline specification, that is, Column (5) of Table 4. Columns (4)–
(6) replace the county fixed effects by route fixed effects. Standard errors listed in parentheses are clustered by
flight-code in Columns (1)–(3) and (4), and are clustered by route-id in Columns (4)–(6).
***p< 0.01, **p< 0.05, *p< 0.1.
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Table A4. Falsification tests: international flights and numbers of flights

Dep. var. Log(Passengers)

International departure PEK International arrival PEK
(4) (5)

API_O �0.0006
(0.0006)

API_D �0.0014
(0.0016)

KP F-statistics 831.1 149.5
Observations 72,389 16,156
Number of flights/fly routes 290 162
Flight FE Yes Yes
Weather controls Yes Yes
Date FEs Yes Yes
Population weight Origin No
Mean [SD] of Dep. Var. 162.52 [72.21] 154.84 [72.40]

Standard errors are clustered by flights and are listed in parentheses;
***p< 0.01, **p< 0.05, *p< 0.1.

Table A3. Heterogeneous analysis: by city scale

Dependent variable: Log(passengers)

Whole sample PEK-small cities PEK-large cities
(1) (2) (3)

API-difference 0.0036*** 0.0060** 0.0032***
(0.0008) (0.0029) (0.0007)

Observations 499,180 123,579 375,592
Number of flights 1410 360 1067
Flight FE Yes Yes Yes
Weather controls Yes Yes Yes
Date character Yes Yes Yes
Population weight Origin Origin Origin
Mean [SD] of passengers 137.46 [52.36] 131.10 [50.28] 148.01 [55.69]
Mean [SD] of API-Dif. 5.30 [56.06] 8.51 [56.26] 4.23 [55.92]
KP F-statistics 40.24 38.21 53.40

All specifications contain the full set of controls and fixed effects as in the baseline specification, that is Column
(5) of Table 4. Small cities are defined as non-provincial capital cities. The climatic covariates are included in
similar fashion as API. Standard errors are clustered by flight-code and are listed in parentheses;
***p< 0.01, **p< 0.05, *p< 0.1.

966 � Chen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article/20/4/939/5803787 by guest on 02 April 2021



Table A5. Heterogeneous analysis: by time

Dependent variable: Log(passengers)

(1) (2) (3) (4)

Panel A: By times of day Midnight Morning Afternoon Evening
API-difference �0.0107 0.0027** 0.0039** 0.0039**

(0.0317) (0.0013) (0.0017) (0.0018)
Observations 1469 154,448 177,336 165,761
Number of flights 46 569 567 615
Hourly subsample 00:00–05:59 06:00–11:59 12:00–17:59 18:00–23:59
KP F-statistics 63.01 135.1 117.5 84.55
Panel B: By season Spring Summer Autumn Winter
API-difference 0.0025*** �0.0002 0.0020*** 0.0065***

(0.0009) (0.0006) (0.0002) (0.0022)
Observations 153,046 114,724 115,327 115,720
Number of flights 1113 906 927 941
Monthly subsample March–May June–August September–November December–February
KP F-statistics 22.38 108.5 41.16 35.39
Panel C: By year 2008–2010 2008 2009 2010
API-difference 0.0021*** 0.0015 0.0016*** 0.0033***

(0.0005) (0.0036) (0.0004) (0.0011)
Observations 115,469 33,675 40,793 40,971
Number of flights 1097 803 803 818
Monthly subsample March–April March–April March–April March–April
KP F-statistics 61.24 97.49 47.47 38.11

Panel A consists of sub-samples according to flight take-off time. Panel B consists of sub-samples according to
climatic seasons. Panel C consists of sub-samples from March to April for each year as these are the 2 months
where data are available for all years. All specifications contain the full set of controls and fixed effects as in the
baseline specification, that is Column (5) of Table 4. Standard errors are clustered by flight-code and are listed in
parentheses; ***p< 0.01, **p< 0.05, *p< 0.1.

Table A6. Heterogeneous analysis: by region

Dependent variable: Log(passengers)

(1) (2) (3) (4)

Panel A: WinterHeat WinterHeat NonWinterHeat NonWinterHeat
Heating regions �WinterHeat �NonWinterHeat �WinterHeat �NonWinterHeat
API-difference 0.0003 0.0051** �0.0197 0.0015***

(0.0007) (0.0024) (0.0369) (0.0004)
Observations 57,826 75,995 46,339 318,870
Number of flights 442 519 482 1214
KP F-statistics 32.54 79.72 30.08 159.8
Panel B: Distance Total sample Distance Quantile 1 Distance Quantile 2 Distance Quantile 3
API-difference 0.0034*** �0.0043 0.0081 0.0017***

(0.0008) (0.0084) (0.0057) (0.0005)
Observations 499,180 137,634 175,639 186,103
Number of flights 1410 439 494 507
Distance [121–2564 km] [121–923 km] [923–1401 km] [1411–2564 km]

Panel A consists of sub-samples according to the ‘winter heating’ status of origin and destination cities. Panel B
consists of sub-samples according to the straight-line distance between origin and destination cities. All specifica-
tions contain the full set of controls and fixed effects as in the baseline specification, that is Column (5) of
Table 4. Standard errors are clustered by flight-code and are listed in parentheses;
***p< 0.01, **p< 0.05, *p< 0.1.
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