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A B S T R A C T

Based on methods developed by Bollerslev et al. (2016), we explicitly accounted for the heteroskedasticity in the
measurement errors and for the high volatility of Chinese stock prices; we proposed a new model, the LogHARQ
model, as a way to appropriately forecast the realized volatility of the Chinese stock market. Out-of-sample
findings suggest that the LogHARQ model performs better than existing logarithmic and linear forecast models,
particularly when the realized quarticity is large. The better performance is also confirmed by the utility based
economic value test through volatility timing.
1. Introduction

The Chinese stock market is highly volatile due to features such as the
various types of listed firms and investors. Individual investors, who are
more likely to be noise traders, play a major role in driving the movement
of Chinese stock prices, while the lack of security supplies leaves the
market vulnerable to speculation, further worsening the situation. The
highly volatile nature of the Chinese stock market demands a suitable
econometric specification in order to appropriately model and forecast
market volatility.

Studies of volatility within the Chinese stock market have so far used
various econometric models. The classic choice is GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) class models that are
frequently used to model and forecast the volatility of stock index futures
and options (e.g., Fabozzi et al., 2004; Hou and Li, 2014; So and Tse,
2004; Yang et al., 2011). For example, Chen et al. (2013) studied the
effect of index futures trading on spot volatility in the Chinese stock
market and adopted a panel data evaluation approach to avoid a
potentially omitted variable bias. Wei et al. (2011) highlighted the
hedging effectiveness of the copula-MFV (MFV: Multifractal Volatility)
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model over the copula-GARCH models using the prices of the Chinese
stock index spots and futures. The recent development of realized mea-
sures based models such as the Realized GARCH model (Hansen et al.,
2012; Hansen and Huang, 2016) or the HEAVY (High Frequency Based
Volatility) model (Shephard and Sheppard, 2010) and reduced-form
models such as the HAR (Heterogeneous Autoregressive) model (Corsi,
2009) have also attracted considerable attention. Among them, the
parsimonious and easy to estimate HAR model has been widely used for
volatility forecasting in the Chinese stock market (e.g., Wang and Huang,
2012; Ma et al., 2014; Huang et al., 2016, etc).

However, Bollerslev et al. (2016) argued that the HAR model ignores
time variability with regard to the magnitude of the realized volatility
measurement errors, and thus suffers from an errors-in-variables prob-
lem. The errors have been shown to attenuate the parameters of the
model, which is why they should be accounted for. As a solution, Bol-
lerslev et al. (2016) proposed the linear HARQ model, which allows the
model parameters to change with the magnitude of the measurement
error. In their study, they showed that the linear HARQ model can
outperform the HARmodel. Similar to the HARQmodel, the HARSmodel
developed by Bekierman and Manner (2018) captures the effect of
und (Associate Editor) and an anonymous referee for valuable suggestions that
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measurement errors by including a time-varying state variable.
Other than models that use the “raw” realized volatility1, trans-

formations of realized variance with nonlinear functions such as square
root (Corsi, 2009), logarithm (Andersen et al., 2003, etc.), or the more
general Box-Cox transformation (Gonçalves and Meddahi, 2011) are
common in the literature. Among them, taking the logarithm is widely
used in practice (such as in Andersen et al., 2007; Bollerslev et al., 2009;
Bekaert and Hoerova, 2014; Andersen et al., 2019, etc.) and can at least
be dated back to Nelson (1991) in volatility modeling literature. There
are several advantages to working with log-linear volatility models. First,
realized volatility is highly skewed with extreme values and changes
rapidly, which presents a challenge in parameter estimations. As shown
in Andersen et al. (2001) and others, the logarithmic transformation can
ease both issues and lead the (logged) realized variance to an approxi-
mately normal distribution2, which provides better statistical properties
for estimation. Second, the log-transformed models generally produce
better out-of-sample forecasts compared to linear versions3 as mentioned
in abundant literature (Ma et al., 2014; Hansen and Huang, 2016;
Audrino and Hu, 2016, etc.). Third, log-linear models automatically
ensure positive volatility and make it easier to add additional features
such as leverage effects (Corsi and Reno, 2009), signed jump variations
(Patton and Sheppard, 2009), etc. Thus, results based on log-linear
models have wider applications.

Motivated by these, we build our model based on Bollerslev et al.
(2016) but focused on logarithmic realized variance. We derive a loga-
rithmic version of the linear HARQ model using the infill large sample
theory and the asymptotic distribution of (log) realized volatility.
Compared with the linear HARQmodel, our model is better at forecasting
the realized volatility, specifically when the realized variance is in rapid
change. This means the LogHARQ model is suitable for forecasting the
volatility of highly volatile markets which are characterized by consid-
erable measurement errors. Our results are based on the China Securities
Index (CSI) 300 and the Shanghai Stock Exchange (SSE) 50 ETF, both of
which underlie China’s index futures and options, respectively. Our
empirical findings suggest that the LogHARQ model significantly im-
proves out-of-sample forecasting accuracy relative to several commonly
used volatility prediction models. The improvement is more pronounced
when the realized quarticity is large.

In addition to the out-of-sample forecast improvements, we evaluated
the economic benefit of using the LogHARQ model as a volatility fore-
casting model for investment decisions. Fleming et al. (2001) developed
a framework for assessing the economic value of volatility timing stra-
tegies. They considered a risk-averse investor who has mean-variance
preferences and allocates her wealth across different assets. Based on
this, Fleming et al. (2003) used the realized volatility to form estimates
for the conditional covariance matrix of asset returns; they found that the
performance of volatility timing can be improved by using
high-frequency data. Similarly, Marquering and Verbeek (2004) pro-
posed a framework for evaluating the economic value of volatility timing
strategies when allocating between two different assets, one of which is a
risk asset while the other one remains risk-free. The framework is also
applied by Nolte and Xu (2015) to show the inclusion of realized jumps in
1 The sum of intraday squared returns.
2 In certain applications where linear models are essential, some studies trim

extreme realized volatility (e.g., Majewski et al., 2015; Huang et al., 2019)
before estimation. Such trimming is generally not needed (thus their informa-
tion can be used in estimation) for log-linear models as logging automatically
reduces the magnitude of extreme realized variance.
3 Evidence from our empirical investigation indicates that the log-linear HAR

model works better than the linear HAR model, especially with rolling window
settings. In some cases, both with Chinese data and US data (the exact dataset
used by Bollerslev et al. (2016); see appendix), the log-linear HAR model (even
without measurement error correction) outperforms the linear HARQ model in
Bollerslev et al. (2016), indicating that taking the logarithm is not a trivial
consideration in regression-based models.
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volatility timing can improve a risk-averse investor’s portfolio
performance.

Following Marquering and Verbeek (2004), we investigated the
economic benefits of using the LogHARQ model as a volatility forecast
model within a volatility timing–based portfolio allocation strategy. We
used the CSI 300 and the SSE 50ETF as the risk assets and a one-year fixed
deposit as the risk-free asset. Using the HAR, HARQ, and LogHARmodels
as benchmarks, we showed that an investor is willing to pay a fee to use
the LogHARQ model as a forecast model that further supports the usage
of LogHARQ model in forecasting Chinese stock market volatility.
Several robustness checks indicated that our results are robust to alter-
native realized measures and model specifications, and that they can be
applied to a large set of Chinese stock indices4.

The remainder of this paper is organized as follows. Section 2 presents
the notations and derives the LogHARQ model. Section 3 describes our
dataset and reports on the volatility forecasting accuracy of the LogHARQ
model as well as of the other benchmark models. Section 4 discusses the
economic value of using the LogHARQ model through volatility timing.
Section 5 presents the results of the robustness checks. The conclusion is
presented in Section 6.

2. Model specification

Assuming that the volatility of the return process follows a continuous
process with an instantaneous variance σ2t , the daily volatility is therefore
defined as the integral of the instantaneous variance over a given period,
namely:

IVt ¼
Z t

t�1
σ2
s ds (1)

Andersen and Bollerslev (1998) showed that the conditional expec-
tation of IVt equals the conditional variance of the daily return across the
informational set at time t-1 and proposed the realized variance as the
total sum of the squared high-frequency returns to estimate IVt :

RVt ¼
XM
i¼1

r2t;i (2)

where rt;i ¼ ln
�
Ptþðiþ1ÞΔ=PtþiΔ

�
defines the Δ -period intraday return, and

Δ is defined as 1 divided by the number of observations (M) for each
trading day. Due to data limitations5, RVt approximates IVt with a
measurement error, and such error will affect parameters of regression-
based volatility models. Bollerslev et al. (2016) proposed a corrected
version of linear HAR using the structure of the error term.

In practice, both IV and its approximation, RV, are highly right-
skewed, especially in the case of emerging markets where volatility is
generally higher and can undergo significant changes. The occasionally
extreme values distort the parameters of linear volatility models. As
mentioned above, modeling volatility in logarithm form is a popular
choice. However, as taking the logarithm is a nonlinear transformation,
the asymptotic distribution (when M tends to infinity) of lnRVt is dis-
torted too, as shown in Barndorff-Nielsen and Shephard (2006):

ln RVt ¼ ln IVt þ ηt ηt eMN
�
0; cIQtIV�2

t

�
(3)

where c ¼ ðμ�4
1 þ 2μ�2

1 � 5Þ=M and μ1 ¼ ffiffiffiffiffiffiffiffiffiffi
2=M

p
. IQt is the integrated

quarticity, defined as:

IQt ¼
Z t

t�1
σ4s ds (4)
4 In addition, we tested our new specification with the 27 Dow Jones Con-
stituents, as described by Bollerslev et al. (2016) in the appendix, and found
supportive results of LogHARQ over HAR, HARQ, and LogHAR.
5 As Δ cannot be arbitrarily small.
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As the variance of measurement error changes form as compared with
the linear case6, the correction term used by Bollerslev et al. (2016) is no
longer applicable here.

To obtain the correction term for the log-linear model, we started by
assuming that the logarithm of IV follows an AR(1) process motivated by
the stylized volatility clustering feature, documented in the literature for
illustration7:

ln IVt ¼ θ0 þ θ1ln IVt�1 þ εt (5)

Here, we refer to θ1 as the “actual” parameter that measures the contri-
bution of lagged volatility, assuming independence between εt and ηt . As
lnIV cannot be directly observed, the empirical application of equation
(5) often relies on regression based on lnRV instead of lnIV:

ln RVt ¼ β0 þ β1ln RVt�1 þ et (6)

where et is simply the residue of the regression and is assumed to be
independent of ηt , as in Bollerslev et al. (2016). Therefore, the OLS
(Ordinary Least Square) estimator of β1 remains consistent. In the pres-
ence of measurement error ηt , we can rewrite equation (6) by inserting
equation (3):

ln IVt ¼ β0 þ β1ðln IVt�1 þ ηt�1Þþ ðet � ηtÞ (7)

As ηt�1 cannot be observed, the “estimated” parameter β1 will not be
equal to the “actual” parameter θ1. Instead, from equation (7), we have:
bβ1 ¼
P

tð gln IVt�1 þ ηt�1Þ gln IVtP
tð gln IVt�1 þ ηt�1Þ2

¼
�P

t
gln IVt�1

gln IVt

��
T þ �Ptηt�1

gln IVt

��
T�P

tð gln IVt�1Þ2
��

T þ �Ptη
2
t�1

��
T þ 2

�P
tηt�1

gln IVt�1

��
T
→

Covðln IVt; ln IVt�1Þ
Varðln IVÞ þ VarðηÞ ¼ β1 (8)
where gln IVt is the demeaned version of ln IVt (i.e. ln IVt � ln IVt) and the
limit is taken when T → ∞. Following Bollerslev et al. (2016), additional
assumptions that ηt is identically distributed (i.e., IQt IV�2

t is constant) and
Varðln IVÞ is constant are imposed. Also from equation (5), we have:

bθ1 ¼
P

t
gln IVt�1

gln IVtP
tð gln IVt�1Þ2

¼
�P

t
gln IVt�1

gln IVt

��
T�P

tð gln IVt�1Þ2
��

T
→

Covðln IVt; ln IVt�1Þ
Varðln IVÞ ¼ θ1

(9)

Combining (8) and (9), we have

β1 ¼
Varðln IVÞ

Varðln IVÞ þ VarðηÞθ1 ¼
Varðln IVÞ

Varðln IVÞ þ cIQIV�2
θ1 (10)

Equation (10) shows the well-known “bias toward zero” effect
induced by measurement error and suggests that if the variance of the
measurement error is not a constant, the “estimated” parameter should
be a time-varying parameter even if the “actual” parameter is time
invariant. To recover θ1, we inverse equation (10):

θ1 ¼ β1
�
1þ cIQ=

�
IV2Var

�
ln IV

���
(11)

In practice, taking the time-varying variance of the measurement
error into account, following Bollerslev et al. (2016), we relax the con-
stant assumption of IQIV�2 and obtain
6 The asymptotic of RVt is RVt � IVteMNð0; 2ΔIQtÞ, as shown in Barndorff-
Nielsen and Shephard (2006).
7 Volatility clustering implies a strong autocorrelation between future vola-

tility and current or past volatilities. One can view AR(1) as a simplified version
of HAR.
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θ1 ¼ β1 þ β1Q IQt�1=IV2
t�1 (12)
� �
where β1Q ¼ β1c=Varðln IVÞ. The t � 1 is selected because θ1 is the co-
efficient of ln RVt�1. The integrated quarticity can be estimated by the
realized quarticity, which is defined as:

RQt ¼ M
3

XM

i¼1
r4t;i (13)

Together with equation (12), a feasible corrected equation can be
written as:

θ1 ¼ β1 þ β1Q
�
RQt�1=RV2

t�1

�
(14)

Inserting the corrected equation into the LogAR (1) model (replacing
β1 with the recovered θ1), we get:

ln RVt ¼ β0 þ
�
β1 þ β1Q

RQt�1

RV2
t�1

�
ln RVt�1 þ et (15)

In line with Bollerslev et al. (2016), we define the LogARQ (1) model
using the following square root form in order to increase the robustness
of the model8:

ln RVt ¼ β0 þ
 
β1 þ β1Q

RQ1=2
t�1

RVt�1

!
ln RVt�1 þ et (16)

For the HAR-type model, two corrected versions are proposed. The
first version only corrects the lagged daily variance (referred to as Log-
HARQ), resulting in:

lnRVt¼β0þ
 
β1þβ1Q

RQ1=2
t�1

RVt�1

!
lnRVt�1þβ2lnRVt�1jt�5þβ3lnRVt�1jt�22þet

(17)

where ln RVt�jjt�h ¼Ph
i¼jln RVt�i=ðh þ 1 � jÞ.

The reasoning behind this is that both weekly and monthly averaged
variances have smaller measurement errors due to their sample average
nature9. Therefore, we can leave them uncorrected and thus retain two of
our parameters. The second version (referred to as LogHARQ-F) corrects
all lagged variances, resulting in:

ln RVt ¼ β0 þ
 
β1 þ β1Q

RQ1=2
t�1

RVt�1

!
ln RVt�1 þ

 
β2 þ β2Q

RQ1=2
t�1jt�5

RVt�1jt�5

!
ln RVt�1jt�5

þ
 
β3 þ β3Q

RQ1=2
t�1jt�22

RVt�1jt�22

!
ln RVt�1jt�22 þ et

(18)

We use the first version in the current paper. The results from the
second version are similar, and are available upon request.

For the linear HARQ model, Bollerslev et al. (2016) proposed the
8 Alternative specifications of correction terms such as
RQ =RV2or logðRQ1=2=RVÞ are also tested; we found no significant improve-
ments in the model when these specifications are used. More detailed results are
available upon request.
9 As mentioned below, this setting is in line with Bollerslev et al. (2016).



Table 1
Summary statistics.

SSE 50ETF CSI 300

2007–2011 2012–2016 2007–2011 2012–2016

RV lnRV RV lnRV RV lnRV RV lnRV

Mean 2.76E-04 �8.555 2.09E-04 �9.141 3.34E-04 �8.408 1.96E-04 �9.162
Median 1.84E-04 �8.600 9.46E-05 �9.266 2.11E-04 �8.465 9.31E-05 �9.282
Maximum 4.09E-03 �5.498 4.87E-03 �5.324 4.76E-03 �5.348 4.77E-03 �5.345
Minimum 1.91E-05 �10.864 6.89E-06 �11.885 2.32E-05 �10.673 9.55E-06 �11.559
Std. Dev. 3.11E-04 0.817 4.29E-04 1.024 3.73E-04 0.876 3.80E-04 0.989
Skewnessa 4.918 0.284 6.502 0.653 3.956 0.254 6.552 0.680
Kurtosis 43.177 3.007 54.849 3.770 30.172 2.656 58.578 3.834
ADF Stat. �8.765*** �5.491*** �7.540*** �4.347*** �8.472*** �5.598*** �7.540*** �4.347***

Note: The ADF tests use 5 lags. *** denotes significance at the 0.01 level.
a Kurtosis is defined as excess kurtosis.
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following structure based on the approximation of IV and the resulting
equation is10:

RVt ¼ β0 þ
�
β1 þ β1QRQ

1=2
t�1

	
RVt�1 þ β2RVt�1jt�5 þ β3RVt�1jt�22 þ ut (19)

where RVt�jjt�h ¼Ph
i¼jRVt�i=ðh þ 1 � jÞ.

It is worth noting that the functional transformation of the integrated
variance has a non-trivial effect on the correction process of the model.
Similar non-trivial effects can also be found when other realized mea-
sures are used to approximate IV, because different realized measures
may have different asymptotic distributions.

Since variables (including the correction terms) are observable, all
proposed models above can be estimated using the ordinary least squares
method, in which the current volatility is regressed on the lagged vola-
tilities and their corresponding correction terms. In order for the pa-
rameters of the correction terms to be comparable across different
models, the correction terms are standardized to zero mean and unit
variance. The statistical significance of the parameters is evaluated based
on the HAC (Heterogeneous and Autocorrelation Consistent) robust
standard errors.

3. Data and volatility forecasting

3.1. Data

We focused our empirical study on the CSI 300 and the SSE 50ETF as
they underlie the index futures and options accordingly; we also
extended our analysis to a larger set of Chinese stock indices for
robustness check. Our sample is obtained from the RESSET database11,
and covers a total of 2407 days with 5-min intervals of intraday prices
between January 4, 2007 and December 30, 2016.12 We also evenly split
the sample into two subsamples at the end of 2011 for subsample
investigation.

Table 1 reports the descriptive statistics on the daily realized vola-
tilities and logarithmic realized volatility for the CSI 300 and the SSE
50ETF in the two included subsamples. The results of the ADF tests reject
the null hypothesis on the presence of a unit root for every series at the
0.01 level.

Fig. 1a and b presents the time variation of the logarithmic RV for the
CSI 300 and the SSE 50ETF, respectively. During the 2015 Chinese stock
market crash, the log RV for both assets experienced a significant
10 A fully corrected version is also discussed in their paper and results are
similar to this partial corrected one.
11 Website: http://www.resset.cn/databases.
12 The Chinese stock market experienced a market breakdown on January 4
and 7, 2016, which triggered a circuit breaker. Data for these two days are
excluded from our sample.
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increase, which reinforces the necessity to investigate the volatility
forecasting performance with the two subsamples separately.

3.2. In-sample estimation results

Table 2 presents the full-sample parameter estimates for the LogARQ
and LogHARQ models, together with the benchmark LogAR and LogHAR
models. We standardized the correction form, RQ1=2 =RV , to be zero
mean and unit variance, which makes it easier to compare the co-
efficients of β1 across models. We also report on the adjusted R-squares
for cross model comparison.

Table 2 shows that the measurement error plays an important role in
forecasting the realized volatility for both assets, as indicated by the
significance of β1Q. When the time-varying measurement error is
considered, the LogARQ and the LogHARQ models assign a greater
weight to the daily lag, in line with the indications of Bollerslev et al.
(2016). Consistent with previous studies investigating HAR models (e.g.,
Corsi, 2009; Corsi et al., 2010), the estimates β1, β2, and β3 are also
statistically significant in the LogHARQ model.

3.3. Out-of-sample forecast results

The one-day-ahead forecast series are obtained by estimating the
parameters of the models with a fixed length rolling window comprised
of the previous 1000 observations. The increasing windowmethod is also
used13, and the results of this analysis are reported for comparison.

To compare these results with the results obtained using the linear
HAR model, we assumed that the residuals of the LogHAR and LogHARQ
models are normally distributed14, so that the forecast of the LogHARQ
model can be expressed as follows:

Ft ¼ exp

 
β0 þ

 
β1 þ β1Q

RQ1=2
t�1

RVt�1

!
ln RVt�1 þ β2ln RVt�1jt�5 þ β3ln RVt�1jt�22

þ σ2
e

2

!
(20)

where σt is the standard deviation of error et from equation (6).
Consistent with previous literature (e.g., Bollerslev et al., 2016), we

used a standard MSE (Mean Square Error) measure and the QLIKE
(Quasi-likelihood) loss function to evaluate the out-of-sample perfor-
mance of the different models, such that:

MSE ¼
XT
t¼τ

�
RVt � Ft

	2
(21)
13 With initial window length set as 1000 observations as well.
14 See Bekaert and Hoerova (2014) etc. for similar assumption.

http://www.resset.cn/databases


Fig. 1. The logarithmic realized volatility of the stock indices.

Table 2
Estimation results for the full sample.

SSE 50ETF CSI 300

LogAR LogHAR LogARQ LogHARQ LogAR LogHAR LogARQ LogHARQ

β0 �1.957*** �0.496*** �1.814*** �0.579*** �1.703*** �0.425*** �1.717*** �0.549***

(0.123) (0.132) (0.118) (0.132) (0.115) (0.116) (0.111) (0.118)
β1 0.779*** 0.318*** 0.795*** 0.377*** 0.807*** 0.353*** 0.805*** 0.394***

(0.014) (0.027) (0.013) (0.028) (0.013) (0.027) (0.012) (0.028)
β2 0.405*** 0.355*** 0.381*** 0.345***

(0.043) (0.043) (0.042) (0.042)
β3 0.221*** 0.203*** 0.219*** 0.199***

(0.036) (0.036) (0.035) (0.035)
β1Q 0.018*** 0.009*** 0.016*** 0.009***

(0.001) (0.001) (0.001) (0.001)
Adj. 0.452 0.454 0.468 0.464 0.456 0.473 0.473 0.480

Note: *** denotes significance at the 0.01 level. Robust standard errors are reported in parentheses.
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QLIKE ¼
XT
t¼τ



RVt

Ft
� ln

�
RVt

Ft

�
� 1
�

(22)

where Ft refers to the one-step-ahead forecasts, and RVt denotes the true
152
realized volatilities.
The MSE and QLIKE loss ratios are reported in Table 3. All loss ratios

are computed relative to the benchmark HAR model and therefore
comparable across different models.

Table 3 provides evidence that the LogHARQ model performs better



Table 3
Out-of-sample forecast losses of different models for the full sample.

AR HAR ARQ HARQ LogAR LogHAR LogARQ LogHARQ

Panel A SSE 50ETF
MSE RW 1.050 1.000 0.952 1.035 1.097 0.969 1.038 0.956

(0.295) (0.295) (1.000) (0.295) (0.295) (0.295) (0.295) (0.929)
IW 1.077 1.000 0.997 0.966 1.078 1.048 1.045 1.033

(0.258) (0.658) (0.658) (1.000) (0.258) (0.370) (0.658) (0.658)
QLIKE RW 1.349 1.000 1.160 1.006 1.215 0.990 1.129 0.980

(0.000) (0.576) (0.000) (0.576) (0.000) (0.576) (0.000) (1.000)
IW 1.406 1.000 1.175 0.963 1.100 0.956 1.042 0.947

(0.000) (0.165) (0.000) (0.501) (0.000) (0.501) (0.002) (1.000)
Panel B CSI 300
MSE RW 1.107 1.000 1.148 1.101 1.174 0.990 1.117 0.979

(0.064) (0.392) (0.392) (0.392) (0.064) (0.392) (0.064) (1.000)
IW 1.150 1.000 1.093 1.002 1.093 1.018 1.065 1.014

(0.026) (1.000) (0.141) (0.950) (0.041) (0.813) (0.274) (0.881)
QLIKE RW 1.439 1.000 1.321 1.035 1.196 0.978 1.119 0.959

(0.000) (0.216) (0.002) (0.216) (0.001) (0.216) (0.002) (1.000)
IW 1.551 1.000 1.150 0.939 1.055 0.927 1.001 0.911

(0.000) (0.036) (0.000) (0.137) (0.000) (0.137) (0.001) (1.000)

Note: This table reports the ratio of the losses for different models relative to the benchmark HARmodel. Both the MSE and the QLIKE loss functions are adopted, and the
forecast series are obtained using both a rolling window (RW) estimation and an increasing window (IW) estimation. The value in bold is associated with the lowest ratio
in each row. The value in parentheses represents the probability of inclusion within the model confidence set (Hansen et al., 2011) with its R statistics (Hansen et al.,
2003). Values greater than 0.1 denote the models which were included at the confidence interval of 90% (i.e., those models are statistically equivalent to the best set of
models in terms of corresponding loss functions), and we emphasize those models by underlining their ratios.

Table 4
Out-of-sample forecast losses of different models for the two subsamples.

SSE 50ETF CSI 300

HARQ LogHAR LogHARQ HARQ LogHAR LogHARQ

Panel A 2007–2011
MSE RW 1.030 0.817 0.802 0.976 0.793 0.789

IW 0.983 0.748 0.733 0.971 0.743 0.735
QLIKE RW 0.984 0.899 0.870 0.921 0.853 0.861

IW 0.960 0.855 0.827 0.902 0.809 0.807
Panel B 2012–2016
MSE RW 1.106 0.789 0.774 1.046 0.882 0.854

IW 1.146 0.818 0.803 1.053 0.892 0.862
QLIKE RW 0.961 0.779 0.754 0.895 0.823 0.814

IW 1.029 0.822 0.798 0.919 0.858 0.847

Note: This table reports the ratio of the losses for different models relative to the benchmark HAR model. Panel A shows the loss ratios for the 2007–2011 period, while
Panel B reports the loss ratios for the 2012–2016 period. Both MSE and QLIKE loss functions are adopted; the forecast series are obtained using both a rolling window
(RW) estimation and an increasing window (IW) estimation. The value in bold is associated with the lowest ratio in each row. We emphasize the models that are
included in the model confidence set (Hansen et al., 2011) and their R statistics (Hansen et al., 2003) by underlining their ratios.
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than other linear and logarithmic models in most cases. The LogHARQ
model improves by at least 4% in its forecasting accuracy relative to the
benchmark HAR model, as measured by the QLIKE function. Lee et al.
(2014) also modeled the volatility of China’s stock exchanges, and found
that the long-memory feature of the Chinese market volatility suggests a
possibility of constructing nonlinear models in order to improve fore-
casting performance.

We used the model confidence set (MCS) proposed by Hansen et al.
(2011) to evaluate whether the performance difference is statistically
significant15. This method assigns a p-value16 to each model, which de-
notes the probability of the givenmodel to represent one of the best set of
models in terms of forecasting performance under the given loss
functions.

For both indexes, the HARQ, LogHAR, and LogHARQ models are all
included in the confidence set regardless of the value of their loss func-
tions and window lengths. The AR, LogAR, ARQ, LogARQ, and the
15 The R statistics (Hansen et al., 2003) is used here; the alternative SQ statistic
provides similar results.
16 The increase of p-value indicates that the prediction accuracy of the model
increases.
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standard HAR models underperform when it comes to out-of-sample
forecasting, since they are all excluded from the model’s confidence set
for a given loss function. Although the HARQ, LogHAR, and LogHARQ
are all included, the p-values for the LogHARQ are higher in most cases,
indicating the superior forecasting power of our proposed model over the
existing linear and logarithmic forecasting models.

We compared the out-of-sample forecast performance of the different
models for the two subsamples and reported the results in Table 4. Panel
A shows the loss ratios for the 2007–2011 period, while Panel B reports
the loss ratios for the 2012–2016 period17.

For each asset, we can observe that the loss ratios for the HARQ,
LogHAR, and LogHARQ models decrease, evidence which supports the
superior forecasting performance of the LogHARQmodel. The results are
consistent across Panels A and B, so the higher forecast accuracy holds for
both sample periods investigated. Improvements in the forecast accuracy
of the LogHARQ model relative to the HAR model range from 13% to
17 To save space, we only focus on the three models included in the MCS from
Table 3 and only report the ratio of the loss function when compared with the
HAR model; we only emphasize the models in the MCS for the 90% confidence
interval.



Table 5
Stratified RQ out-of-sample forecast losses.

SSE 50ETF CSI 300

HARQ LogHAR LogHARQ HARQ LogHAR LogHARQ

Panel A Bottom 95% RQ (2007–2011)
MSE RW 0.968 0.834 0.820 0.902 0.814 0.820

IW 0.956 0.790 0.777 0.887 0.779 0.780
QLIKE RW 0.969 0.907 0.888 0.896 0.863 0.884

IW 0.953 0.871 0.853 0.875 0.822 0.831
Panel B Top 5% RQ (2007–2011)
MSE RW 1.552 0.671 0.647 1.468 0.655 0.585

IW 1.149 0.492 0.460 1.447 0.543 0.487
QLIKE RW 1.214 0.767 0.593 1.208 0.739 0.596

IW 1.058 0.653 0.490 1.176 0.668 0.555
Panel C Bottom 95% RQ (2012–2016)
MSE RW 0.945 0.815 0.795 0.965 0.893 0.881

IW 0.986 0.851 0.830 0.977 0.908 0.896
QLIKE RW 0.945 0.787 0.763 0.880 0.823 0.821

IW 1.015 0.833 0.809 0.905 0.860 0.857
Panel D Top 5% RQ (2012–2016)
MSE RW 1.793 0.679 0.686 1.141 0.871 0.822

IW 1.807 0.684 0.693 1.141 0.872 0.824
QLIKE RW 1.311 0.606 0.569 1.120 0.815 0.702

IW 1.323 0.606 0.574 1.121 0.819 0.707
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26%. In terms of the MCS, LogHARQ is the only model which is included
for both series with regard to all subsamples18.

Table 5 reports the stratified loss ratios based on their realized
quarticity. By further splitting the sample from Table 4, we reported the
results for forecasts on days when the previous day’s RQ was very high
(i.e., Top 5% RQ) and for forecasts concerning the rest of the sample (i.e.,
Bottom 95% RQ). We found that the LogHARQ model achieves an even
better predictive performance when the RQ is high. This verifies our
hypothesis that the LogHARQ model has a stronger predictive power for
realized volatility when the market is highly volatile.

To sum up, by explicitly accounting for the heteroskedasticity in the
measurement errors and for the high-volatility features of Chinese stock
prices, the LogHARQ model performs better than existing logarithmic
and linear forecasting models, particularly when the RQ is large. The
LogHARQ model increases the accuracy of the forecasting of realized
volatility within the Chinese stock market.

Note: This table reports the ratio of the losses for different models
relative to the benchmark HARmodel. Panels B and D show the ratios for
the days following a day with an RQ value in the top 5%, in the sample
covering the 2007–2011 period and the 2012–2016 period, respectively.
Panels A and C present the results for the remaining 95% of the days in
the two subsamples. Both the MSE and the QLIKE loss functions are
adopted; the forecast series are obtained using both a rolling window
(RW) estimation and an increasing window (IW) estimation. The value in
bold is associated with the lowest ratio in each row. We emphasize the
models which are included in the model confidence set (Hansen et al.,
2011) and their R statistics (Hansen et al., 2003) by underlining their
ratios.

4. Economic value test

We now focus on the economic value of the model. We define the
economic value of the LogHARQ model as the cost that an investor is
willing to pay in order to use the LogHARQ model as their preferred
volatility forecasting model (i.e., instead of other models).

To evaluate the economic value, we first construct a series of volatility
timing–based portfolio allocation strategies. We assume that the investor
is risk-averse and thus form a portfolio containing both risk assets (i.e.,
18 For most cases where both the LogHARQ and the LogHAR model are
included, the p-values (omitted to save space, available upon request) are lower
for the LogHAR than for the LogHARQ model.
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the CSI 300 and the SSE 50 ETF) and risk-free assets (i.e., a one-year fixed
deposit). The daily returns of these assets are used as the basis for port-
folio allocation. The economic intuition of this strategy is quite simple.
Given the expected return, the investor places more weight on a risk asset
when its volatility is low, while preferring the risk-free asset when the
risk asset’s volatility is high. The investor maximizes their utility as
follows:

Max
wt

U
�
Et

�
rp;tþ1

�
;Vart

�
rp;tþ1

�
(23)

where Etðrp;tþ1Þ represents the conditional expected return of the port-
folio, Vartðrp;tþ1Þ denotes the conditional variance, and ωt represents the
optimal weight of the risk asset. The expected return is calculated as
follows:
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where Etðrm;tþ1Þ represents the conditional expected return of the risk
asset and rf ;tþ1 represents the risk-free return19.

Although we could have utilized more sophisticated utility functions,
we chose to use the simple mean-variance preferences because our pri-
mary interest is whether the improvements in the accuracy of volatility
forecasting, as produced by the LogHARQ model, could gain an addi-
tional economic value. The mean-variance utility function is as follows:

U
�
Et

�
rp;tþ1

�
;Vart

�
rp;tþ1

�¼Et

�
rp;tþ1

�� γ

2
Vart

�
rp;tþ1

�
(25)

Thus, the equation for the optimal weight of the risk asset is:

ωt ¼
Et

�
rm;tþ1

�� rf ;tþ1

γVartðrm;tþ1Þ (26)

where γ represents the investor’s risk aversion coefficient.
We computed the conditional variance of the portfolio as follows:

Vartðrm;tþ1Þ¼BCF� gRVtþ1 (27)
19 We have not imposed the assumption of zero expected returns in this
analysis. Following the indications of Fleming et al. (2003) and Nolte and Xu
(2015), we used the average daily return across the sample period as a proxy for
the expected return.



Table 6
Daily performance fee.

2007–2011 2012–2016

LogHARQ-HAR LogHARQ-HARQ LogHARQ-LogHAR LogHARQ-HAR LogHARQ-HARQ LogHARQ-LogHAR

Panel A SSE 50ETF
γ¼ 1 RW 0.00296 0.00146 0.00020 0.00111 0.00108 0.00047

IW 0.00330 0.00186 0.00044 0.00107 0.00106 0.00045
γ¼ 2 RW 0.00148 0.00073 0.00010 0.00055 0.00054 0.00023

IW 0.00165 0.00093 0.00022 0.00054 0.00053 0.00022
γ¼ 3 RW 0.00099 0.00049 0.00007 0.00037 0.00036 0.00016

IW 0.00110 0.00062 0.00015 0.00036 0.00035 0.00015
Panel B CSI 300
γ¼ 1 RW 0.00169 0.00105 0.00002 0.00161 0.00056 0.00027

IW 0.00182 0.00129 0.00005 0.00153 0.00049 0.00025
γ¼ 2 RW 0.00084 0.00052 0.00001 0.00081 0.00028 0.00013

IW 0.00091 0.00065 0.00002 0.00077 0.00025 0.00013
γ¼ 3 RW 0.00056 0.00035 0.00001 0.00054 0.00019 0.00009

IW 0.00061 0.00043 0.00002 0.00051 0.00016 0.00008

Note: This table reports the performance fee that an investor is willing to pay in order to use LogHARQ as a forecasting model instead of other models (e.g., the HAR
model). We used the HAR, HARQ, and LogHAR models as benchmarks and report the results for all three models. The SSE 50ETF and the CSI 300 are each used as the
risk assets. The forecast series are obtained using both a rolling window (RW) estimation and an increasing window (IW) estimation. The results of the two subsamples
are presented, where γ represents the risk aversion coefficient.

Table 7
Alternative RV measures.

LogHARQ/HARQ LogHARQ/LogHARQ(RV5)

SSE 50ETF CSI 300 SSE 50ETF CSI 300

RV5 RV10 RV15 RV5 RV10 RV15 RV5 RV10 RV15 RV5 RV10 RV15

MSE RW 0.694 0.689 0.654 0.796 0.850 0.831 1.000 1.016 1.041 1.000 1.052 1.054
IW 0.694 0.689 0.688 0.799 0.854 0.840 1.000 1.015 1.040 1.000 1.052 1.054

QLIKE RW 0.837 0.816 0.674 0.975 0.932 0.860 1.000 1.034 1.028 1.000 0.996 0.957
IW 0.831 0.808 0.711 0.981 0.951 0.893 1.000 1.035 1.030 1.000 0.995 0.958

Note: This table reports the loss ratios for the LogHARQmodel relative to the HARQmodel when using 5-, 10-, and 15-min RVs (left panel), and the ratios of the losses for
the LogHARQ model when using different RVmeasures as opposed to the losses when using the 5-min RV (right panel). RV5, RV10, and RV15 represent the 5-, 10-, and
15-min RVs, respectively. Both the MSE and the QLIKE loss functions are adopted; the forecast series are obtained using both a rolling window (RW) estimation and an
increasing window (IW) estimation.
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where fRVtþ1 is the realized volatility forecast obtained from the pre-
dictive models. The BCF (Nolte and Xu, 2015) is used to match the
realized volatility of the 6.5 h high-frequency trading to the daily vari-
ance, namely:

BCF ¼ 1=n
Pn

t¼1r
2
t

1=n
Pn

t¼1RVt
(29)

We estimated the optimal weight of the risk assets ωt based on the
daily return and the realized volatility; then we computed the average
realized utility of the portfolio as follows:
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which measures the average realized utility of the portfolio using the
LogHARQ model to forecast RV. To evaluate the economic value of
LogHARQ as a forecasting model, we computed a performance fee which
represents the cost that an investor is willing to pay in order to use
LogHARQ as a forecasting model instead of other models (e.g., the HAR
model). We computed the performance fee (denoted by Δ) by solving the
following equation:
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Table 6 reports the performance fee after using different models as the
benchmark model. We used the HAR, HARQ, and LogHAR models as
benchmarks and report the results for each model in Panels A, B, and C,
respectively. We used the CSI 300 and the SSE 50ETF as risk assets, and
constructed the portfolio with the risk-free assets individually. Two
subsamples were used, one covering the 2007–2011 period and the other
covering the 2012–2016 period. Risk aversion coefficients of 1, 2, and 3
are used, and the results are presented in Table 6.

Table 6 shows that the performance fee remains positive for every
combination of assets, sample periods, and risk aversion coefficients,
indicating that an investor would indeed be willing to pay a fee in order
to use the LogHARQ model. As a forecast model, LogHARQ is superior to
the HAR, HARQ, and LogHAR models when forecasting Chinese stock
market volatility. The results are consistent across both sample periods
investigated.

5. Robustness checks

5.1. Alternative RV measures

To investigate whether our results are sensitive to the sampling fre-
quency of prices, we considered 10- and 15-min RVs as alternative RV
measures and compared the out-of-sample performance of the LogHARQ
model using these different RV measures. We used a 1-min realized
kernel (RK) as a proxy for the true volatility series. The results are re-
ported in Table 7. The left panel presents the loss ratios for the LogHARQ
model relative to the HARQ model using 5-, 10-, and 15-min RVs. The
right panel presents the ratios of the losses of the LogHARQ model when
using different RV measures and when comparing them to the losses of



Table 8
Out-of-sample forecast losses for alternative stock indexes.

AR HAR ARQ HARQ LogAR LogHAR LogARQ LogHARQ

Panel A
Avg. ratio Med. ratio MSE RW 1.269 1.000 1.317 1.085 1.112 0.938 1.044 0.927

1.249 1.000 1.282 1.101 1.123 0.926 1.025 0.919
IW 1.239 1.000 1.314 1.093 1.105 0.942 1.037 0.931

1.220 1.000 1.280 1.102 1.086 0.932 1.024 0.922
QLIKE RW 1.545 1.000 1.068 0.995 0.995 0.907 0.996 0.907

1.555 1.000 1.074 0.998 0.990 0.894 0.985 0.890
IW 1.498 1.000 1.071 1.048 1.016 0.933 1.016 0.932

1.495 1.000 1.074 1.037 1.018 0.924 1.014 0.920
Panel B
% in MCS (avg. p-val) MSE RW 0.00% 42.86% 0.00% 42.86% 14.29% 100.00% 28.57% 100.00%

(0.004) (0.151) (0.034) (0.151) (0.069) (0.486) (0.091) (0.844)
IW 0.00% 42.86% 0.00% 42.86% 28.57% 100.00% 28.57% 100.00%

(0.009) (0.166) (0.039) (0.166) (0.076) (0.488) (0.099) (0.829)
QLIKE RW 0.00% 85.71% 14.29% 42.86% 28.57% 100.00% 28.57% 100.00%

(0.006) (0.274) (0.081) (0.144) (0.172) (0.714) (0.148) (0.860)
IW 0.00% 100.00% 28.57% 42.86% 28.57% 100.00% 28.57% 100.00%

(0.016) (0.361) (0.069) (0.113) (0.183) (0.724) (0.145) (0.819)

Note: Panel A reports the ratio of the losses for different forecasting models relative to the losses of the standard HAR model. The average and median loss ratios across
seven stock indexes are reported. The lowest ratio is given in bold. Panel B reports the frequency of inclusion in theMCS using the R statistics. The corresponding average
p-values are reported in parentheses.
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the 5-min RV.
It is clear that for both series the LogHARQ outperforms the HARQ,

and that this result holds for RVs sampled at different frequencies. This
highlights the importance of conducting a log-linear specification instead
of a linear specification, at least with regard to our dataset20. Within the
LogHARQmodel, RVwith a lower sampling frequency generally provides
a better performance (especially under the MSE loss function), which is
consistent with the current literature on volatility forecasting for high-
frequency data.
5.2. Alternative stock indexes

In some of our previous empirical works, we focused on the CSI 300
and the SSE 50ETF as underlying assets of the Chinese index futures and
options. We now utilize a larger set of Chinese stock indexes as a
robustness check for our out-of-sample results. The extended set includes
seven stock indexes, namely the SSE A Share Index, the SSE B Share
Index, the SSE Composite Index, the SZSE Component Index, the CSI 500
Index, the SZSE SME Price Index, and the SZSE CHINEXT Price Index.
Due to our reliance on the availability of data, the data used covers the
period from January 4, 2012 to December 30, 2016, which includes 1214
trading days.

Following the indications of Bollerslev et al. (2016), we report the
average and median loss ratios across the above-mentioned stock indexes
in Table 8. For comparison, all of the loss ratios are relative to the losses
computed from the HAR model. Regardless of the loss functions and
window lengths, the LogHARQ model consistently obtains the lowest
average and median loss ratios, which represents strong evidence for its
superior out-of-sample performance in forecasting Chinese stock market
volatility.

Similar to the results of the two series, the LogHAR and LogHARQ
models are both included within the confidence set regardless of their
series, loss functions, and window lengths. The AR, LogAR, ARQ, Log-
ARQ, HARQ, and standard HAR models underperform when it comes to
out-of-sample forecasting, since they are excluded from the model con-
fidence set under certain conditions, such as certain loss function and
particular series (i.e., they are not always 100% included within the
MCS). Although the LogHAR and the LogHARQ models are both
20 We also tested our model with a similar dataset obtained from Bollerslev
et al. (2016) and found evidence that favors the log-linear specification to some
extent.
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included, the p-values of LogHARQ are higher in most cases, indicating
the better forecasting power of our proposed model over the existing
linear and logarithmic forecasting models.

6. Conclusions

Based on the methods used by Bollerslev et al. (2016), we explicitly
accounted for the heteroskedasticity of measurement errors and for the
high volatility of Chinese stock prices, and proposed a new model, the
LogHARQ model, as a way to forecast the realized volatility of the Chi-
nese stock market. Our LogHARQ model performed better than other
logarithmic and linear models, particularly when the realized quarticity
was large. The better performance is also confirmed by the utility based
economic value test through volatility timing. This suggesting potential
benefits of using LogHARQ for risk management and portfolio allocation
decisions.
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