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A Decision Support Tool for Rural Water Supply Planning 

Joseph Cook, Jake Wagner, and Gunnar Newell* 1 

 

Abstract 

Over a dozen studies have examined how households who travel to collect water (about one-

quarter of humanity) make choices about where and how much to collect. There is little evidence, 

however, that these studies have informed rural water supply planning in anything but a qualitative way. 

In this note, we describe a new web-based decision support tool that planners or community members can 

use to simulate scenarios such as (1) price, quality, or placement changes of existing sources, (2) the 

closure of an existing source, or (3) the addition of a new source. We describe the analytical structure of 

the model and then demonstrate its possibilities using data from a recent study in rural Meru County, 

Kenya. We discuss some limits of the current model, and encourage readers and practitioners to explore it 

and suggest ways in which it could be improved or used most effectively. 
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1. Introduction 

Approximately one-quarter of households in the world do not have access to improved 

drinking water services on premises.  The issue is concentrated in rural areas: 40% of rural 

households overall, and 75% of rural Sub-Saharan African households, travel to collect water 

(JMP 2019).  Continuing four decades of large-scale investments in rural water supply, 

governments and non-profits continue to invest heavily in improving this situation by giving 

households access to more and higher quality water sources like protected springs and drilled 

boreholes.  “Demand-led” approaches of the 1990’s recommended that communities be given a 

voice in choosing the right type of technology and be provided with a sense of ownership over 

the built facilities. Evidence suggests these policies have improved the sustained functionality of 

water points (Whittington et al. 2009), but problems remain. Approximately one in three 

handpumps is estimated to be out of service at any one time (Rural Water Supply Network 2013) 

and user fees and cash on hand continue to be problems (Koehler, Thomson and Hope 2015). 

These rural households often face a complicated decision in procuring water supply.  

They may have access to several sources which vary in quality (e.g. protected deep boreholes vs. 

polluted surface sources), distance from home, hours of availability, and financial price (either 

per trip or per month).  An urban household with a piped connection must choose how much 

water to consume from the tap and whether to treat that water, but a rural household makes a 

three-part decision: where to collect, how much water to collect, and whether the water should be 

treated.   

A large number of empirical studies have examined these types of choices, though the 

vast majority are in urban or small-town settings where the relevant decision is whether to 

supplement the unreliable piped supply with non-network water.1  Relatively few have examined 

choices in rural settings (White, Bradley and White 1972; Briscoe, Chakraborty and Ahmed 

1981; Mu, Whittington and Briscoe 1990; Kremer et al. 2011; Gross and Elshiewy 2019; 

Wagner, Cook and Kimuyu 2020), and only two (Gross and Elshiewy 2019 and Wagner et al. 

2020) have examined rural households’ decisions of how much water to collect, what economists 

call “water demand”. A large number of studies have used stated preference methods (i.e. 

contingent valuation) to estimate households’ willingness-to-pay for improvements in access or 

quality (see van Houtven et al. (2017) for a recent review).  Although these studies can be used 

 
1  See Briscoe, Chakraborty and Ahmed 1981; Mu, Whittington and Briscoe 1990; Persson 2002; Larson, Minten 

and Razafindralambo 2006; Nauges and Strand 2007; Basani, Isham and Reilly 2008; Cheesman, Bennett and Son 

2008; Nauges and Van Den Berg 2009; Boone, Glick and Sahn 2011; Kremer et al. 2011; Onjala, Ndiritu and Stage 

2014; Uwera and Stage 2015; Gross and Elshiewy 2019. 
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to estimate the percentage of people who will use a source at a given price, they are generally 

silent on quantity responses.   

Despite this body of research, however, it appears that the results have not affected water 

supply planning on the ground in anything but a qualitative way. Water supply planners or 

community members evaluating options are routinely faced with difficult questions that this 

research could inform. Should we increase the per-container fee to improve cost recovery?  If we 

do, what fraction of customers will revert back to using surface sources? How much less water 

will an average household collect? Where should we locate new water points? How many new 

water points should we install? What will happen to household water use if one of the water 

points fails?  If we convert an open spring to a protected source and improve quality, what 

fraction of the population will use it?   

These studies could be used to make predictions for questions like these, but we are 

unaware of a prediction tool or decision-support system freely and currently available for rural 

water planners or communities to use. Hopkins et al. (2004) use the results of a contingent 

valuation study in Rwanda to parameterize two location models (the p-median and location set-

covering model2) to optimize how many new water points to build and where to place them 

given a cost-recovery constraint or a minimum service level (maximum distance) constraint.  

Hopkins (2015) builds on this work, applying the optimization model to rural Mozambique and 

adding a model component to estimate (and optimize) the net social benefits to users by valuing 

time savings.  In both cases, the model emphasizes mathematical optimization given constraints, 

though the authors make clear that the model could and should be used as an input into a 

complex, community-driven planning process.  

At the same time, the advent of water point mapping (AkvoFlow, mWater, Water Point 

Data Exchange (WPDx)) has dramatically increased the amount of geospatial water point data 

available to planners. WaterAid’s Water Point Mapper tool3 is a good example of how water 

point data is currently being used to produce maps that can be used for monitoring and planning 

based on minimum-service criteria.  The tool does not allow users to interactively explore how 

changing parameter assumptions or modeling various scenarios would change various outcomes 

of interest.   

In this note, we describe a decision support tool for rural water supply that planners or 

community members can use to simulate scenarios such as (1) price, quality, or placement 

 
2 Note also that ESRI’s ArcGIS software includes a “location-allocation tool” that uses similar approaches to choose 

optimal locations of facilities, which include water points.  As Hopkins (2015) points out, however, the tool cannot 

be used to optimize the number of water points, and of course the software is proprietary. 
3 www.waterpointmapper.org   

http://www.waterpointmapper.org/
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changes of existing sources, (2) the closure of an existing source, or (3) the addition of a new 

source. The tool is freely available on the web4, and draws from empirical research on household 

water source choice and demand studies.  We plan to continue refining the tool, and welcome 

input from possible users for the types of questions and interfaces they would find valuable. The 

objective of this practical note is to describe the basic analytical structure of the model and show 

how the model might be used, in a case study from rural Meru County, Kenya.  We close with a 

discussion of the analytical limits of the current version of the model and a call for more 

empirical research on rural water demand to inform future versions of the model.  

2. Methodology  

2.1 Framework 

 Our model assumes that the decisions of 1) how much water to collect and 2) which 

sources to collect from happen sequentially but in an inter-related way.  Households first make 

the decision of how much to collect, and then decide how to allocate that “demand” across 

sources available to them. This approach is called the “linked demand” model, and originated in 

the literature studying how people make decisions about visiting recreation sites for fishing, 

boating, hunting, etc. (Bockstael, Hanemann and Kling 1987).  Other studies have modeled these 

inter-related decisions by first predicting which source will be chosen, and then predicting 

demand/quantity conditional on the household choosing that source (Gross and Elshiewy 2019; 

Nauges and Strand 2007).  We prefer the linked demand approach because it, similar to the 

“almost ideal demand system” approach (Coulibaly, Jakus and Keith 2014; Deaton and 

Muellbauer 1980), allows households to use more than one source at a time (Elliott et al. 2017). 

As a simple example, the model first predicts how much water (in 20 liter jerricans) that a 

household will collect in total over a week, which we will discuss in more detail shortly. Suppose 

this total weekly demand is 50 jerricans (1,000 liters). We then predict how the household will 

allocate those 50 jerricans across the sources available to them by predicting the probability that 

a household will use a particular source, again described further below. Suppose our example 

household had four publicly-constructed boreholes and a river within 3 kilometers walk.  

Suppose that each of the four boreholes charged a user fee. Based on the distance between the 

household and each source, the source’s price, and the source’s quality, we predict the 

probability that the household will collect from that source.  Our model might predict the 

household has an 80% probability of choosing a borehole which is closest to them and happens 

to also be the cheapest, a 10% probability of collecting from a second borehole which is 

 
4 The model can be accessed at www.ruralwaterdecisions.org  

http://www.ruralwaterdecisions.org/
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somewhat farther away but has higher quality, and a 10% probability of collecting from the free, 

poor quality river.  Suppose the other two boreholes are so distant from the household that our 

model predicts zero probability of the household using them.5 Demand at each source is 

calculated by multiplying total demand (50 jerricans) by the probability of use.  We would 

predict the household would collect 40 jerricans from the first, closest borehole (50 * 0.80), 5 

jerricans from the other borehole and 5 jerricans from the river (50 * 0.10).  By aggregating 

household demand at each source, we can calculate statistics at the source level:  how much 

water will be collected (and revenue raised) from the first borehole by all households in the 

vicinity.  

2.2 Parameters and Model Calculations 

The probability of a household collecting from each source is derived from several 

empirical studies that rely on “random utility” theory in economics (McFadden 1974) to explain 

a household’s choice of water source.  These studies have generally found that price, distance to 

source, quality and reliability are all important determinants (Briscoe et al. 1981; Mu et al. 1990; 

Persson 2002; Larson, Minten and Razafindralambo 2006; Nauges and Strand 2007; Basani, 

Isham and Reilly 2008; Cheesman, Bennett and Son 2008; Nauges and Van Den Berg 2009; 

Boone, Glick and Sahn 2011; Kremer et al. 2011; Onjala, Ndiritu and Stage 2014; Uwera and 

Stage 2015; Gross and Elshiewy 2019). Our model focuses on how three key source attributes 

affect the probability of choosing a source: distance, price, and quality.6  The first two attributes 

are continuous measures, but quality is assumed to be discrete:  either “poor”, “fair”, or “good”.  

Households’ preferences for each attribute are represented by three parameters – one for each 

attribute (distance, price, and quality). The first two parameters are negative (households prefer 

shorter distances and lower prices in choosing a source) and the third is positive.  The magnitude 

of each parameter indicates how sensitive households are to that attribute: if the price parameter 

increases in magnitude, it indicates that households are more sensitive to price. We leave the 

interpretation of these quality categories to model users, but in general we would map these 

categories to the WHO/UNICEF’s  Joint Monitoring Program as follows: “poor” quality would 

include surface and “unimproved” sources (i.e. unprotected wells or springs); “good” quality 

 
5 In practice, we limit households to only collecting from their top three sources (ranked by the indirect utility 

function). This is a crude way to prevent our model from (unrealistically) predicting positive collection by each 

household from each source in the study site. 
6 More specifically, the model assumes each household’s primary source is the one that provides the most utility, 

where the “indirect” utility function for water source j to household i is given by: Vij = -0.11*Price – 0.52*Distance+ 

0.1*(Good Quality) – 0.1*(Poor Quality). Then the probability of household i collecting from source j, where all 

other sources in the household’s choice set are denoted k, is given by: Prij = 
𝑒
𝑉𝑖𝑗

∑ 𝑒𝑉𝑖𝑘𝑘
.     
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would include “safely managed” sources and possibly “basic” sources; and “fair” quality would 

include “limited” and possibly “basic” sources.  Although some studies have included the 

source’s availability or potential for interpersonal conflict as attributes, we omit them here for 

parsimony, to focus on the three most important attributes.  We also omit wait times, which we 

discuss below. 

We use base case parameters that are taken from a combination of Wagner et al. (2020) 

and our judgment about the existing literature. The user can, however, adjust the parameters of 

the utility function. For example, if she believes households are more sensitive to price increases 

than our base case assumption, she can change the value from the default price parameter of -

0.11 to a higher absolute value, i.e. -0.3. We implement this in the tool with an input field, where 

the range is bounded by the high and low estimates from the empirical literature (Table 1).7 

 

Table 1. Base Case Parameters Used 

Parameter Base Case  

Value [Range] 

Source choice (Prob. of choosing source) 

Price (per 20L 

jerrican) 

-0.11 [-1, 0] 

Distance (meters) -0.52 [-2, 0] 

Good quality 0.10  [0,1] 

Poor quality -0.10 [-1, 0] 

Household demand (20L jerricans per week) 

Household size  7.28 

Choice set quality 12.52 

 

There are only two existing studies examining total household water demand, or volume, 

among rural, unconnected households (Gross and Elshiewy 2019; Wagner et al. 2020). We 

follow the latter in modeling household demand as a function of only two parameters: household 

size and “choice set quality”. The choice set quality is a parameter linking the source choice and 

water demand decisions; it is unique for each household, and is the sum of the utility obtained 

 
7 Implicitly, we only model collection from public sources (i.e. we do not model the household’s decision between 

using their private source and collecting from a public source). We do, however, adjust demand calculations to 

reflect the prevalence of private sources in the study site. 
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from collecting from each available source weighted by the probability that the household 

collects from that source (Hanemann 1982, Creel 1992). Intuitively, a household with more high-

quality, low-cost sources close to them will have a higher “choice set quality” and thus collect 

more water per capita than a household with only one poor-quality source.8  We again allow the 

user to vary this parameter; the bounds are given by the 95% confidence interval found in 

Wagner et al. (2020), currently the only study to use this approach. The model assumes an 

average household size for the entire study site since data on individual household sizes would 

typically be unavailable to a planner. We use a default household size of 5 members based 

loosely on rural Kenya. We assume that increasing household size by one member increases 

water demand by 7.28 20L jerricans per week, with a household-level intercept of 0.77 jerricans 

per week (average choice set quality is 2.16).  This corresponds to approximately 37 liters per 

capita per day for a family of 5.9 

3. Case Study  

We demonstrate the decision-support tool by analyzing a sample dataset from Meru 

County, Kenya. This data comes from the most recent water source choice and demand study 

(Wagner et al. 2020), and is available for download at www.ruralwaterdecisions.org. In what 

follows, we describe the results of three simulations analyzed using the decision-support tool.  

Before discussing the simulations, we present results from a benchmark scenario. Figure 

1 displays the set of available sources in our study site, along with color-coded market segments. 

Households residing inside the bounds of each market segment are predicted to primarily use the 

water source of the corresponding color. For example, households located in the light blue-

shaded region on the right of the map are predicted to primarily collect water from source 4. 

Figure 2 shows only the northeast region of our study site, which will be the focus of the 

following simulations. 

 
8 Choice set quality is implicitly a function of the attributes of available sources and household preferences over 

those attributes via the utility function. Formally, the household demand equation is given by: total weekly demand 

(20L containers)= 0.77+ 12.52*(choice set quality)+7.28*(household size). 
9 We omit for now variables on income or wealth from the household demand equation. These variables are 

typically included in models of demand for piped water and were included in the two rural water demand studies 

cited above. These analyses are typically identified based on variation in income or wealth across households in the 

same study site, but again we expect most users would not have detailed household income information. We do not 

believe there is currently enough information in the existing literature to know how water demand varies across 

study sites that vary in average income or wealth levels. The model can easily be adapted should this information 

become available. 

http://www.ruralwaterdecisions.org/
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Figure 1: Benchmark Scenario (full study site) 

 

The simulations are used to test how changes in source attributes affect both source- and 

community-level water demand statistics. There are four sources located within the subregion of 

interest. Each of these sources has benchmark attributes (Table 2). In each of the three 

simulations, we alter the source attributes of one of the sources located in the subregion. 

Simulation 1 increases the quality at Source 3. Simulation 2 increases the price at Source 7. In 

Simulation 3, we assume Source 5 has fallen into disrepair and has been closed.  

For each simulation, we generated maps that depict color-coded market segments 

(Figures 3-6). We also generated a set of demand statistics for the benchmark scenario and each 

of the simulations (Table 3). For brevity, we will compare the results of each simulation to those 

of the benchmark case, but cross-simulation comparisons are also insightful.  
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Table 2: Source Attributes – Baseline Scenario and Three Simulations 

 
Attributes Benchmark Simulation 1 Simulation 2 Simulation 3 

Source 3  Price 1 Ksh 1 Ksh 1 Ksh 1 Ksh 

 
Quality Poor   Good Poor   Poor   

Source 4  Price 2 Ksh 2 Ksh 2 Ksh 2 Ksh 

 
Quality Fair Fair Fair Fair 

Source 5  Price 2.5 Ksh 2.5 Ksh 2.5 Ksh n/a, closed 

 
Quality Good Good Good n/a, closed 

Source 7  Price 2 Ksh 2 Ksh 5 Ksh 2 Ksh 

 
Quality Good Good Good Good 

 

Simulation 1 tests the effects of a change in source quality on households’ choice of 

primary source and on demand. Notice that, when the quality of Source 3 increases from ‘poor’ 

to ‘good’, households that were previously using Source 4 (‘fair’ quality) switch to using Source 

3 (Table 3). While households have stopped using Source 4 as their primary source, they still 

collect from Source 4, though less frequently. The new market share captured by Source 3 due to 

improved quality increases demand from 6,822 to 9,215 jerricans at Source 3. 

In Simulation 2 we investigate the effect of increasing the price at Source 7 from 2 to 5 

Ksh. We see that many households that were previously collecting primarily from Source 5 have 

shifted their primary collection to Sources 4, 5, and 6. Due to the price increase, water collected 

at Source 7 drops dramatically, from 6,278 to 4,264 jerricans, but revenues increase because the 

fall in demand is offset by the increased price.  
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Figure 2. Benchmark Scenario (Subregion) 

 

Figure 3. Simulation 1: Increase the Quality of Source 3 from ‘Poor’ to 

‘Good’ 
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Figure 4. Simulation 2: Increase the Price of Source 7 from 2Ksh to 

5Ksh 

 

Figure 5. Simulation 3: Source 5 (in white) Breaks Down  
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 Finally, in Simulation 3, we consider how the closure of Source 5 affects source choice 

and demand. We see that when Source 5 closes, Sources 4 and 7 capture most of the household 

demand. Households, however, must now travel much farther to collect water, resulting in the 

lowest total demand across the three simulations. 

 

Table 3: Monthly Demand Statistics (during the dry season) – Baseline and Three Simulations 

  Benchmark 

Sim. 1 

(quality 

change 

#3) 

Sim. 2 

(price 

increase

#7) 

Sim. 3 

(#5 

closes)  
Study-

site……

….                              

Percent of households using 'good' 

quality sources …….  0.20 0.47 0.17 0.18 

 

Average weekly water demand 

(20L jerricans)              59.5 59.5 58.9 58.0 

 

Average liters per capita per day 

(liters) 34.0 34.0 33.6 33.2 

Source 3 

……….  

Number of primary users 

(households) 

………. 

………. 68 344 

………. 

102 70 

 Total demand (20L jerricans) 6,822 9,215 7,307 7,233 

 Total revenue (Ksh) 6,822 9,215 7,307 7,233 

Source 4 

……….  

Number of primary users 

(households) 

………. 

………. 242 0 259 261 

 Total demand (20L jerricans) 8,191 7,363 8,760 8,946 

 Total revenue (Ksh) 16,382 14,726 17,519 17,891 

Source 5 

……….  

Number of primary users 

(households) 

……………

…..49 48 52 n/a 

 Total demand (20L jerricans) 4,634 4,272 5,465 n/a 

 Total revenue (Ksh) 11,584 10,680 13,664 n/a 

Source 7 

……….  

Number of primary users 

(households) 

………. 

………. 145 134 73 170 

 Total demand (20L jerricans) 6,278 6,395 4,264 7,787 

 Total revenue (Ksh) 12,557 12,791 21,321 15,574 

 

4. Discussion 

 We begin by acknowledging some of the limitations of the current version of the model 

which we hope to address in the future.  First, households spend time not only in traveling to 

collect water but also by waiting in queues at the source.  The model does not incorporate 

waiting times, which is equivalent to a strong assumption that waiting times are zero at all 
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sources or are equal at all sources (and thus affect the probability the same).  Further versions of 

the model could include the ability for the user to input fixed wait times that vary by source. A 

more complex dynamic model could allow wait times to increase at a given source as more users 

are predicted to use that source, feeding back into the decision to use it. 

 Second, having water delivered to the household by a private vendor is a common feature 

in many communities, including our study site in Kenya, but is omitted from the model.  

Similarly, the model currently allows the user to enter the fraction of households with a private, 

piped connection and then assumes that these households collect water exclusively from their 

piped connection and do not contribute to demand from sources away from home. Future 

versions could allow a user to add vending as a water supply option in a community at a fixed 

price per jerrican and quality. The model would then add vending as a spatially-indeterminate 

“source” with zero distance.  Similarly, we could allow households with piped connections to 

supplement with sources away from home. 

 In many places, including some parts of our study site, the groundwater table is shallow 

enough for households to invest capital costs in digging or drilling wells on their property. This 

reduces their water collection times and volumetric water prices to zero, and quality can vary 

depending on the groundwater and the actions households take to treat the well water.  

Incorporating this investment decision would require adding a time dimension to the model 

beyond the simple monthly time step in the current version. Households would compare the 

capital costs of investing in the well against the expected benefits over its useful life (years, if not 

decades), which are in turn a function of the quality of water sources away from home both 

currently and predicted into the future. 

 Our model is silent on water availability. It is possible that our demand calculations could 

not be met by available supply, or that aggregate demand over time could lower water tables and 

dry up some groundwater wells.  We are not hydrologists, but would welcome a collaboration to 

link our demand model with a groundwater model or surface water models (i.e. SWAT, VIC) 

that could incorporate changes in precipitation (from downscaled climate models) or changes in 

landscape, soil conservation practices and/or forest cover.  

 Finally, our parameterization of water quality is admittedly simplistic:  water can be 

either “good”, “fair” or “poor”.  Water quality is a multi-dimensional attribute that includes taste, 

color/turbidity, and salinity, all of which are perceptible to users.  It also includes microbial 

contamination, which is not readily apparent to users but may be reflected in users’ perceptions 

of the health risks of using that source based on past experience. Microbial contamination can be 
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measured objectively, but it is users’ perceptions of those risks that drive decisions of source 

choice and demand.   

Although researchers have conducted a large number of randomized trials measuring 

willingness-to-pay for point-of-use water treatment devices like filters or chlorine tablets (e.g. 

Ashraf et al. (2010)), there are many fewer estimates of how perceived water quality (Jeuland et 

al. 2015; Somanathan 2010) impacts source choice decisions. This would improve the accuracy 

of our model. In general, we hope this note illustrates the point that more sophisticated demand-

side water supply planning tools could be helpful to the sector, but are at the moment informed 

by only a handful of studies. More research in this area would be helpful.   

We would encourage practitioners who are interested in learning more about the tool to 

visit ruralwaterdecisions.org to explore how it works, and to contact us with feedback and 

recommendations for future model iterations.  One can imagine practitioners and researchers 

forming a constructive feedback loop using the model as a core.  As a first step, an implementer 

can use the model in a given location with information only on water source locations and 

attributes to predict household behavior.  This ex-ante prediction could then be compared to 

water point consumption data (if metered).  If the model performs poorly, additional data 

collection from intercept surveys at water points or short household interviews could provide 

data for researchers to generate site-specific preference parameter estimates that improve model 

fit for future use at that location.  When such studies are well-done and made publicly available 

(ideally in peer-reviewed outlets), they could be added as parameter value choices in the 

decision-support tool.  This would also add to the public good of improving our ability to 

accurately forecast rural water choices and speed progress towards achieving the Sustainable 

Development Goals and maintaining the gains achieved. 
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