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Abstract 

This study examines the impact of China’s Natural Forest Protection Program (NFPP) on forest cover in 

four Chinese provinces. The NFPP represents one of the world’s largest-scale forest 

conservation/restoration programs in terms of its sheer budget size and geographical coverage. 

Understanding the heterogeneous impact of the policy on different landowners is important to evaluating 

its viability and success. This paper presents the first rigorous assessment of the program’s performance by 

comparing its impacts on forestland held by state-owned forest enterprises (SOFEs) and village collectives. 

We use the spatial regression discontinuity approach to better identify the impact caused by the program 

per se, rather than by other possible correlated confounding factors. Our results find that the NFPP has a 

moderately positive effect on forest cover on average over both types of forestland holders. Moreover, we 

find that the program has a greater positive effect on collective forests than on state forests, even though 

the program’s financial support for the former is not as strong as that for the latter. Our empirical findings 

provide unique insights that contribute to the highly controversial and ongoing debate on property right 

reform of China’s state-owned forests. 
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A regression discontinuity assessment of the differential impacts of China’s Natural 

Forest Protection Program across forestland property right regimes 

 

 

1   Introduction 
 

China’s Natural Forest Protection Program (NFPP), launched at the turn of the century and 

currently ongoing, is a large-scale forest conservation and restoration program that restricts 

logging and finances afforestation in 18 Chinese provinces. It aims to conserve and restore the 

country’s forest cover, and thereby to reduce soil erosion which was typically believed to be 

(at least partly) responsible for the disastrous floods that hit vast areas of China in the late 1990s 

(Liu et al. 2014; Xu et al. 2006). Two decades after the NFPP was introduced, the program has 

cost approximately CNY 400 billion in total (Qiao et al. 2021)1, which accounts for roughly 

0.4% of China’s GDP in 2020. The NFPP boasts one of the world’s largest forest protection 

and restoration programs in terms of its budget and geographic scope (Liu et al. 2008; Lu et al. 

2018). 

 

In tandem with the logging restrictions introduced under the NFPP, China has massively 

increased imports of forest products from neighboring nations (Mayer et al. 2005). The NFPP 

has been suspected of being responsible for displacing deforestation from China to other 

countries. Although scientific studies have provided detailed descriptive accounts of the NFPP 

(e.g. Bryan et al. 2018; Fang et al. 2018; Liu et al. 2008; Lu et al. 2018; Xi et al. 2022), there 

has been a paucity of quasi-experimental econometric evidence on whether China’s forest 

cover has been significantly improved by the program. This contrasts with the sheer size of the 

program and the considerable attention it has attracted from the scientific and policymaking 

communities worldwide.  

 

This study estimates the effect of the NFPP on forest cover using a spatial regression 

discontinuity design (RDD) which enables us to better identify the impacts caused by the 

program per se, rather than other confounding factors that possibly correlate with the 

assignment of the program (Athey and Imbens 2017). Our paper contributes to the relatively 

small body of studies that have conducted quasi-experimental analyses on the environmental 

impacts of the NFPP (e.g. Brandt et al. 2015; Ren et al. 2015; Shi et al. 2017; Zhang et al. 2011) 

and on its livelihood impacts (e.g. Liu et al. 2010; Liu et al. 2014; Mullan et al. 2010). The 

quasi-experimental approaches adopted by the existing literature could only control for 

observed confounders (e.g., via matching) and unobserved time-invariants (e.g., using fixed-

effects). However, in the case of the NFPP, the estimated impacts are more likely to be 

influenced by unobserved factors that vary over time. The NFPP covers more than half of 

China’s provinces and affects the entirety of the program area. As a result, the treated and 

control groups in previous studies tend to be far away from each other (e.g., forestlands in 

different provinces inside and outside the program area) and thus likely to differ in various key 

observed and unobserved aspects, many of which could not be adequately accounted for by the 

estimation methods adopted by those studies. 

 

In contrast, the present study adopts a spatial regression discontinuity design (RDD) to further 

control for such potential confounders in assessing the impact of the NFPP on forest cover. 

 
1 Approximately US$58.9 billion. 
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This approach tests whether there is discontinuity in the distribution of forest cover in areas 

immediately inside and outside the NFPP borders after the program was introduced. The 

approach is based on a relatively innocuous (and statistically testable) assumption that factors 

correlated with both forest cover and the assignment of the NFPP are continuously distributed 

across the NFPP borders, and therefore any discontinuity in the distribution of forest cover at 

the NFPP borders can be attributed to the program per se. The statistical strengths of this 

approach are formally discussed in Lee and Lemieux (2010) and Athey and Imbens (2017). 

Therefore, compared to previous research on the environmental effectiveness of the NFPP, our 

chosen approach enables us to better identify changes in forest cover caused by the program 

itself.  

 

In addition, this study speaks to a wider strand of quasi-experimental literature concerning the 

performance of other forest conservation and restoration programs in the developing world 

such as Protected Areas (PAs) and Payments for Ecosystem Services (PES). On the one hand, 

the NFPP shares some characteristics with forest-based PAs in terms of restricting 

deforestation. On the other hand, the NFPP provides financial support for forest restoration and 

maintenance, which resembles the payment component of forest-based PES. There is a limited 

yet growing body of quasi-experimental literature on whether deforestation in developing 

countries can be curbed by forest-based PAs (e.g. Blackman et al. 2015; Bonilla-Mejía and 

Higuera-Mendieta 2019; Herrera et al. 2019; Pfaff et al. 2014; Robalino et al. 2017; Sims and 

Alix-Garcia 2017) or PES (e.g. Alix-Garcia et al. 2015; Börner et al. 2017, Fiorini et al. 2020; 

Jayachandran et al. 2017; Le Velly et al. 2017; Samii et al. 2014, Simonet et al. 2019; Sims and 

Alix-Garcia 2017; West et al. 2020). However, these studies have mixed findings as to the 

effects of forest conservation and restoration programs on forest cover, which often depend on 

the design and enforcement of the program, as well as on contextual factors such as governance 

institutions and levels of deforestation threats. Therefore, this study contributes to this literature 

by undertaking such a case study in the particular context of the NFPP, which as noted, is a 

forest conservation and restoration program implemented at an unprecedentedly large scale. In 

particular, we seek to assess whether the program has differential impacts on forestland under 

different property right regimes, which facilitates the understanding of the reasons underlying 

the aforementioned heterogenous outcomes of forest conservation and restoration programs 

observed worldwide.  

 

The NFPP was initially intended for state-owned natural forests, but eventually enrolled large 

areas of natural forests owned by villages. State-owned forests are owned by the state in 

principle, and managed by state-owned forest enterprises (SOFEs) in practice. These forests 

thus constitute a type of common property resource shared among each SOFE’s employees, 

and between each SOFE and the government bodies that supervise them (Xu et al. 2004). By 

contrast, village-owned forests, or “collective forests”, are officially owned by the village, but 

have mostly been allocated to and managed by individual village households via long-term 

contracts, and therefore can be regarded as semi-private resources (Xu and Hyde 2019; Yi et 

al. 2014; Yin et al. 2013).  

 

To the best of our knowledge, this paper presents the first formal econometric study on whether 

the NFPP has different environmental outcomes in state and collective forests. Though land 

rights are often believed to have implications for the performance of conservation programs 

such as PAs (e.g. Geldmann et al. 2019) and PES (e.g. Wunder et al. 2020), such arguments 

are mostly supported by narrative rather than formal quasi-experimental evidence. The studies 

of Alix-Garcia et al. (2012) and Bonilla-Mejía and Higuera-Mendieta (2019) represent two rare 
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exceptions.2 There is richer quasi-experimental evidence concerning the impacts of land rights 

on forest conditions (e.g. Baragwanath and Bayi 2019; Blackman et al. 2017; Liscow 2013; 

Probst et al. 2020), although this is not equivalent to how land rights affect the outcomes of 

forest conservation programs.  

 

Furthermore, in the more relevant impact evaluation studies from developing countries (such 

as those investigated by Baragwanath and Bayi 2019 and Blackman et al. 2017), the dominating 

forestland property regimes under investigation are common and open-access regimes, where 

the former often entails ‘communal forests’, and the latter is often referred to as ‘state’ or 

‘public forests’ (which are in essence open-access). This context differs from that of the NFPP 

in China which is characterized by common and private property regimes. Hence, our study is 

one of the first quasi-experimental studies in the developing world that compares the 

differential impacts on ‘common’ versus ‘private’ forest property rights resulting from a large-

scale forest conservation program.  

 

Exploring our main research question in the context of the NFPP offers considerable insights 

for the decades-long debate over whether China’s state-owned forests should be “privatized”, 

as described in Liu and Xu (2019). This reform has been stuttering amid the central 

government’s purported concern that the privatization of forest resources would exacerbate 

deforestation. This study empirically tests whether the state property regime indeed 

outperforms the private property regime (village forests) under the NFPP, which provides 

highly pertinent empirical evidence for the debate concerning the property right reform of 

China’s state-owned forests. In addition, this study draws and extends upon a wider literature 

on the reform of China’s state-owned enterprises in various economic sectors beyond forestry 

(e.g. Lin et al. 1998; Jefferson 1998).  

 

The remainder of this article is organized as follows. The next section details the institutional 

background of the NFPP and discusses why studying its heterogeneous impacts across different 

forest land regimes is important.  Section 3 describes the dataset, followed by Section 4 which 

outlines the identification strategy (the spatial RDD), and tests whether this approach can be 

validly applied to our data. Section 5 reports the results of the main analyses and the ancillary 

robustness and placebo tests. The last section concludes by summarizing and discussing the 

key findings. 

 

 

 

2   The Natural Forest Protection Program (NFPP) 
 

In 1998, vast areas of China were devastated by catastrophic floods, which caused huge losses 

of life and property. The severity of the floods was widely attributed to the excessive loss of 

vegetation cover and topsoil in the upstream areas of the Yangtze and Yellow River Basins 

(Mullan et al. 2010; Qiao et al. 2021; Shen et al. 2006). In response to this ecological crisis, 

China launched two large-scale forest conservation and restoration programs, the Natural 

Forest Protection Program (NFPP) and the Sloping Land Conversion Program (SLCP). The 

NFPP was implemented in more than half of China’s provinces, covering a substantial part of 

the country, as shown by the gray areas in Figure 1. The implementation of the NFPP consisted 

of two phases, which covered the first and second decades of this century, respectively. This 

 
2 Herrera et al. (2019) compared the performance of protected areas managed by different levels of government, 

which relates to but also differs from investigating the implications of land property right regimes.  
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study focuses on the first phase of the NFPP, which sought primarily to restrict logging 

activities in natural forests, and to provide financial support for the restoration and maintenance 

of forests (Liu et al. 2008;  Lu et al. 2018; Xu et al. 2006). 

 

 
Figure 1. The NFPP areas  

Note: This map shows the NFPP areas (gray) and the four provinces (hatched areas) that our data 

analyses focus on. The black spots in the zoomed-in part of the map indicate forestland plots in our 

dataset. 

 

 

The NFPP initially targeted natural forest resources in key state-owned forest regions (Xu et 

al. 2006). State-owned forests in China are mostly managed by state-owned forest enterprises 

(SOFEs) at the local level, in theory following specific guidelines set by the central government 

(Xu et al. 2004). Each SOFE is located in and responsible for specific state forest areas. SOFE 

managers decide and plan forest management activities, according to their contracts with the 

government’s forestry authority (Jiang et al. 2014; Xu et al. 2004). SOFE workers execute these 

planned activities in state forests, and their wage levels largely depend on their positions in the 

SOFE hierarchies (Bennett et al. 2008). On top of the position-based basic wages, SOFE 

workers may receive performance-based pay or bonuses, which are mostly based on profits 

from timber production (Söderbom and Weng 2012) rather than forest restoration.  

 

After the introduction of the NFPP, the primary activity of these SOFEs shifted from logging 

natural forests for timber production to the restoration and maintenance of forests (Liu et al. 

2014; Xu et al. 2006), activities which are much less (if at all) profitable and less labor intensive. 

These SOFEs, therefore, had to downsize and lay off a substantial proportion of their 

employees3. Accordingly, a substantial portion of the NFPP funding was spent on severance 

pay, healthcare, and pensions for those SOFE employees who were made redundant, and wages 

and benefits for remaining employees, which can be (to some extent) regarded as compensation 

for the logging restrictions (Qiao et al. 2021; Shen et al. 2006). 

 

Aside from state forests, the NFPP has enrolled large areas of village-owned forests, which are 

formally known as “collective” forests. In some regions, collective forests constitute half of 

the NFPP area (Xu et al. 2006). These collective forests are officially owned by village 

 
3 Many SOFEs were already in deep financial hardship due to long periods of excessive timber harvesting but 

inadequate restoration, known as the “double crisis”. 
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collectives, but the use rights of these collective forests had been largely allocated to individual 

village households using long-term contracts (Hyde and Yin 2019), many of which would last 

as long as 50 or 70 years and were allowed to be transferred and inherited. Therefore, the 

property rights of collective forests in NFPP areas resemble a private or semi-private property 

regime. Collective forest managers in NFPP areas are not substantially compensated for their 

losses of timber revenues associated with the logging restrictions (Xu et al. 2006). But the 

NFPP funds for the restoration and maintenance of forests (e.g., planting and maintaining trees, 

and recruiting forest rangers) are typically made available to both state and collective forest 

managers (Forestry Department of Guizhou Province 2002; Forestry Department of Shanxi 

Province 2000).  

 

The first research question of this study focuses on the average overall effect of the NFPP on 

forest cover. This forest conservation program is of unprecedentedly large scale in terms of 

both budget and geographic coverage and was widely expected to reverse the net losses of 

forest cover in the vast areas it targeted within China. However, the project is subject to many 

constraints which could have compromised its environmental efficacy. For instance, the 

NFPP’s logging restrictions and reforestation activities might be weakly enforced due to 

information asymmetry, as deforestation and reforestation activities are better known to forest 

managers (SOFEs and village households), than to supervisory governmental authorities. 

Though governmental bodies routinely inspect whether SOFEs and village households remain 

in compliance with the NFPP regulations, they often rely on SOFEs and village leaders for 

self-reported evidence, and for the sampling and logistic arrangements for onsite inspections, 

which might have allowed SOFEs and villages to influence the outcome of the inspections.  

 
Furthermore, despite the massive scale of the program’s total budget, the NFPP has been 

frequently accused of under-compensating SOFEs and village households for their losses of 

timber revenues caused by the logging restrictions. The NFPP has no formal provisions that 

substantially compensate collective forest managers for such losses. SOFEs tend to be better 

resourced, but the NFPP funds budgeted for them at the beginning of the program have been 

devalued considerably by inflation. Therefore, the NFPP might have acquired “paper park” 

features such as weak enforcement and insufficient financial resources (Blackman et al. 2015). 

Under the current funding situation, it is largely unclear whether SOFEs and collective forest 

managers in NFPP areas have sufficient incentives to deliver the expected environmental 

outcome.  

 

However, as mentioned, there has been a paucity of formal statistical evidence that can 

convincingly assess how the NFPP has impacted forest cover in the program areas. Earlier 

studies in this regard typically reported that the program had delivered a positive effect on 

forest cover, in light of a total decrease of timber output and a total increase of afforested land 

in the NFPP areas after the program was introduced (e.g. Liu et al. 2008; Xu et al. 2006; Yin 

and Yin 2010). Similar findings were reached by Shi et al. (2016) and van den Hoek et al. 

(2014) which compared the forest cover (derived from satellite data) of some NFPP areas 

before and after the program was launched. Such preliminary evidence, given considerable data 

limitations in the program’s early stages, is likely to have been obscured by confounding factors 

other than the NFPP, such as changes in timber prices and the existence of other forest 

restoration programs in the NFPP areas (such as the SLCP). Some of these confounders were 

better controlled for by some quasi-experimental studies which found further evidence 

corroborating the NFPP’s positive effects on forest cover (e.g. Brandt et al. 2015; Ren et al. 
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2015; Shi et al. 2017; Zhang et al. 2011).4 However, the quasi-experimental methods adopted 

by those studies (i.e. matching and/or fixed effects) can only eliminate confounders that are 

observed or time-constant (Greenstone and Gayer 2009; Imbens and Wooldridge 2009). As 

previously discussed, the NFPP was purposefully assigned to particular types of areas which 

feature a wide range of specific characteristics. Many of those characteristics are likely to be 

time-varying unobservables, which could not be adequately accounted for with the statistical 

methods used in existing studies. This could have biased any findings on the estimated impacts 

of the NFPP. We aim to further address this challenge using a unique dataset at the forestland 

plot level which allows the first spatial RDD analysis on the impact of the NFPP on forest 

cover.  

 

Moreover, this study seeks to investigate whether the NFPP has differential effects on state and 

collective forests. Given the incentive and management structures governing the resources of 

China’s state-owned enterprises, standard economic theory would consider these as being akin 

to common pool or even open access resources. This would mean that in the NFPP lands, SOFE 

managers and workers would be more likely to harvest more timber and take in more NFPP 

funds for their own use (e.g., wages, pensions, and benefits) while at the same time invest less 

in the restoration and maintenance of state forests (Jefferson 1998; Lin et al. 1998). In contrast, 

collective forests in the NFPP areas are mostly allocated to and managed by individual 

households, thus more closely resembling privately owned resources. The incentive structures 

in the latter case would likely be more closely aligned with investing in and benefiting from 

more sustainable use of forest resources. Hence, standard economic theory would predict that 

collective forest managers would likely invest the funds from the NFPP in the restoration and 

maintenance of forests, suggesting that the program may have a better outcome in collective 

forests than in state forests. However, it is worth reiterating that the NFPP budget has different 

provisions for state and collective forest managers in terms of compensating for their financial 

losses associated with the logging restrictions, although program funds for forest restoration 

and maintenance are made available to both types of forest managers.  

 

 

 

3   Data 
 

We compiled a unique panel dataset at the forestland plot level for four Chinese provinces: 

Hubei, Jilin, Shanxi, and Guizhou, each of which has its own geographical and ecological 

importance. Our analysis is restricted to these four provinces because the borderlines of the 

NFPP areas5 pass through these four provinces, and therefore each of these provinces has 

forestland inside and outside the NFPP jurisdiction, as shown in Figure 1. Another important 

reason for focusing on these four provinces is that we managed to obtain key data from before 

and after the introduction of the NFPP only for these four areas. Assessing the validity of the 

RDD requires baseline data before the launch of the program. The validity of the spatial RDD 

requires all relevant variables existing before the program to be continuously distributed across 

the borderlines of the program (Lee and Lemieux 2010). Although only four provinces are 

included in our study, they are reasonably representative of China’s latitudinal range. 

 

 
4 Viña et al. (2016) estimated the impact of the NFPP on forest cover using a spatial autoregressive model, 

which accounts for the observed confounders included in the model but is not typically regarded as a sound 

quasi-experimental approach. 
5 The NFPP borderlines were digitalized from the Atlas of China Forest Resources (Xiao 2005).  



 7 

 

 

Most of the variables in our analysis were sourced from China’s National Forest Inventory 

(NFI) data collected by the country’s State Forestry Administration and local forestry bureaus. 

This forestland plot level dataset contains a wide range of variables concerning forest cover 

and various geophysical and institutional characteristics of sampled forestland plots (e.g., 

altitude, slope, soil quality, and property right regimes), as described in Zeng et al. (2015). The 

NFI dataset sampled forestland plots at the cross points of the two-dimensional kilometer grids 

of China, as shown in Figure 1. Sampled forestland plots are geo-referenced and periodically 

revisited.6 Plot-level variables are collected through field surveys. We obtained a subset of the 

NFI panel data consisting of three waves. The first wave of the data was collected in 1999 or 

2000, which constitutes the baseline period preceding the NFPP. The two post-NFPP waves of 

data were collected in 2004/2005 and 2009/2010, respectively. In our RDD analysis, the main 

outcome variable of interest is forest cover7 obtained from the NFI data.  

 

In addition, as shown in Table 1, our dataset contains many control variables (covariates) that 

are typically considered to influence both forest cover and the assignment of the NFPP. On 

the one hand, we seek to assess the validity of the RDD by testing the continuity of baseline 

covariates across NFPP borders. On the other hand, these covariates will be controlled for in 

the main regression models to ensure that these factors are adequately accounted for. 

 

The NFPP was initially intended for state-owned natural forests. This selection criterion is 

captured by the two covariates “state forest” and “forest origin”. Moreover, China’s state-

owned forests are mostly in the country’s forested but sparsely populated regions. Because 

these forests were not predominantly occupied by local residents, it was considered more 

justifiable and less costly to claim state ownership over these forests (Delang and Wang 2013). 

These less populated regions typically feature higher altitude, steeper slope, lower levels of 

accessibility, and less favorable climate conditions and soil quality. These factors, if not 

adequately accounted for, could potentially confound the observed impacts of the NFPP on 

forest cover, because they also likely correlate with tree growth, deforestation, and forestry 

investment (Hansen et al. 2002; McMahon et al. 2010; Naudts et al. 2016). Further, we have 

discussed in the previous sections that the types of forest property right regimes have often 

been found to have implications for forest cover (Baragwanath and Bayi 2019; Blackman et al. 

2017) and hence forest property rights are also controlled for in our analysis.  

 

Moreover, the accessibility of forests8 is commonly believed to have implications for the costs 

of deforestation and thus for forest cover (Deng et al. 2011; Busch and Ferretti-Gallon 2017). 

Access was controlled for using an Accessibility index constructed from China’s National Forest 

Inventory. Similarly, more populated areas often have higher levels of deforestation, due to 

higher demand for timber and for converting forestland to agricultural land (Viña et al. 2016).  

The covariate “night lights” was constructed using night lights data sourced from the National 

Oceanic and Atmospheric Administration (NOAA) to proxy population density, following 

Ward et al. (2020) and Geldmann et al. (2019). Lastly, the NFPP prioritized areas with greater 

implications for watershed ecosystem services and biodiversity (Hyde and Yin 2019; Liu et al. 

2014; Qiao et al. 2021; Yin 2016). Forests in such areas are more likely to be designated as 

 
6 In the four provinces we focus on, sampled forestland plots have the same size (0.0667 acres) and shape 

(square) (Zeng et al. 2015). 
7 This refers to forest canopy density, which is defined as the proportion of the forestland plot covered by the 

vertical projection of the tree crowns. 
8 For commercial forests, “accessibility” was assessed by NFI surveyors as a three-level indicator according to 

the extent to which a forestland plot is reachable for harvesting and transporting forest products. For non-

commercial forests, we imputed “accessibility” using that of the closest economic forestland plots. 
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protected areas or classified as “ecological forests” where logging restrictions are likely to be 

more rigidly enforced. Therefore, we compiled the two covariates “protected area” and 

“ecological forest” to account for these potential confounders.9 

 
9 Another such possible confounder is whether the NFPP areas have overlaps with the SLCP areas, since the SLCP 

is another large-scale forest restoration program launched at a similar time. However, the four provinces we focus 

on are entirely covered by the SLCP program. We thus assume that the potential confounding effects of the SLCP 

can be cancelled out when we compare forest cover inside and outside NFPP areas within the four provinces.  
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Table 1. Variables and data sources 

 

Note: CMDSC: China Meteorological Data Service Centre; NFI: National Forest Inventory; NOAA: National Oceanic and Atmospheric Administration; SD: Standard Deviation.  

Variable name Definition Data sources Outside NFPP Inside NFPP 

   Mean SD Mean SD 

Outcome variable:       

     Forest cover Canopy coverage (0–100%) NFI 59.713 21.555 62.670 20.829 

Covariates:       

     Altitude Altitude (m) NFI 

NFI 

 

605.857 461.141 1031.134 472.591 

     Slope  1 = flat; 2 = slightly sloped; 3 = sloped; 4 = slightly steep; 5 = steep; 6 = extremely 

steep  

3.261 1.243 2.967 0.945 

     Protected area  Distance (km) to the closest protected area List of National Nature 

Reserves of China 

57.834 43.055 48.213 33.193 

     Night lights  Brightness of night lights (digital number), ranging from 0 (no lights) to 63 

(brightest lights) 

NOAA 1.508 5.526 0.817 3.548 

     Accessibility  Whether forestland is accessible for the harvesting, processing and transportation 

of forest products and reforestation: 1 = accessible already; 2 = likely accessible 

in the near future; 3 = unlikely accessible in the near future  

NFI 1.255   0.605 1.177 0.545 

     Precipitation Total annual precipitation (mm) CMDSC 

CMDSC 

868.532 377.386 884.559 331.169 

     Temperature  Average annual temperature (℃) 10.391 5.554 9.514 18.806 

     Soil  Soil thickness (cm) NFI 

NFI 

NFI 

NFI 

NFI 

 

40.174 24.803 47.265 27.986 

     Ecological forest 1 = ecological forest; 0 = commercial forest 0.415 0.493 0.624 0.484 

     Forest origin 1 = natural; 0 = planted 0.629 0.483 0.818 0.386 

     Age  1 = young; 2 = middle-aged; 3 = near mature; 4 = mature; 5 = post-mature 2.021 1.072 2.044 1.030 

     State forest 1 = state forest; 0 = collective forest 0.334 0.472 0.466 0.499 
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4   Empirical strategy  
4.1   The spatial regression discontinuity design 

 

The spatial RDD is a type of regression discontinuity design that utilizes the spatial borders of 

the treatment as the cutoff (Lee and Lemieux 2010). The main challenge of empirically 

identifying the true impact of the NFPP on forest cover is that the observed difference in forest 

cover inside and outside NFPP areas might be (partly) attributable to factors other than (but 

correlated with) the NFPP, such as the covariates already discussed. The spatial RDD approach 

assumes that all relevant covariates existing before the introduction of the NFPP are 

continuously distributed across the NFPP borders. Under this assumption, the launching of the 

NFPP would be the only source of discontinuity at the NFPP borders. Therefore, any 

subsequent discontinuity in forest cover at the NFPP borders can be attributed to the NFPP per 

se, not other factors. This ex-post discontinuity in forest cover is the treatment effect of the 

NFPP that we sought to estimate using the spatial RDD approach.  
 

We first assessed the overall impact of the NFPP on forest cover by performing spatial RDD 

analyses using the full sample consisting of both state and collective forestland. We next 

repeated all analyses using two subsamples consisting of only state or collective forestland, 

respectively, to compare the impacts of the NFPP across property right regimes. The treatment 

effect of the NFPP on forest cover was estimated using parametric and non-parametric 

approaches, following Imbens and Lemieux (2008), Pan and Singhal (2019), and Chen et al. 

(2019). The parametric model was specified as follows:  
 

(1)                                           𝑌𝑖𝑘𝑡 = 𝛽0 + 𝛼 𝑁𝐹𝑃𝑃𝑖𝑘𝑡 + 𝑓(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡) + 𝜸𝑿𝒊𝒌𝒕 + 𝝂𝒌 + 𝝀𝒕 + 𝜀𝑖𝑘𝑡. 

s.t.        -h < 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 < ℎ 

 

In this model, 𝑌𝑖𝑘𝑡 denotes the forest cover percentage of forest plot 𝑖 in county k in year t. 

𝑁𝐹𝑃𝑃𝑖𝑘𝑡 is the binary treatment variable equaling 1 if plot 𝑖𝑘 is inside the NFPP areas, and 0 

otherwise. The coefficient 𝛼  measures the treatment effect of the NFPP on forest cover. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 measures the shortest distance between plot ik and the NFPP borders. This is the 

running (i.e. assignment) variable that indicates whether a plot is treated by the NFPP or not ( 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 ≥ 0 if treated, and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 < 0 if not). The spatial RDD focuses on data 

close to the NFPP borders within a bandwidth, h. We will further explain how this bandwidth 

was chosen. The function 𝑓(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡) models the trends of forest cover with respect to 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 on both sides of NFPP borders and was allowed to have different parameters on 

the two sides. More specifically, 𝑓(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡) includes a polynomial function of the running 

variable 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡, and the interaction between the powers of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 and the treatment 

variable 𝑁𝐹𝑃𝑃𝑖𝑘𝑡:  
 

(2)                 𝑓(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡) = ∑ (𝛽1𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡
𝑝

)𝑃
𝑝=1 + ∑ (𝛽2𝑝𝑁𝐹𝑃𝑃𝑖𝑘𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡

𝑝
)𝑃

𝑝=1 . 

 

The highest power P was chosen from 1, 2, and 3, using the Akaike Information Criterion (AIC) 

as in Black et al. (2007) and as suggested by Lee and Lemieux (2010). The vectors 𝝂𝒌 and 𝝀𝒕 

represent county and period fixed effects, respectively. The vector 𝑿𝒊𝒌𝒕 contains the covariates 

listed in Table 1. Model 1 was estimated using data close to the NFPP borders within a 

bandwidth h defined via the mean square error (MSE) optimal bandwidth selection approach 

proposed by Calonico et al. (2014a, b). This approach gave an optimal bandwidth of 32.426km 

for a specification of Equation 1 that included all controls. In addition, we tested the robustness 
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of our findings to bandwidth choice by adopting three alternative bandwidths of 20km, 30km 

and 40km. 
  

Moreover, we re-estimated the treatment effects of the NFPP using the non-parametric local 

linear estimator proposed by Calonico et al. (2014a, b). In RDD analyses, non-parametric 

estimation can be a useful complement to parametric estimation as the former is more flexible 

in the functional form of the relationship between the outcome and running variables (Lee and 

Lemieux 2010).  

 

Our non-parametric local linear estimation was performed in a way highly comparable to our 

parametric estimation (as in Equation 1). To start with, the local linear estimation was 

performed using data inside and outside the NFPP areas separately, and thus allowed the 

relationship between the outcome and running variables to differ on the two sides of the NFPP 

borders. In the parametric model (Equation 1), this flexibility was achieved by interacting the 

treatment variable 𝑁𝐹𝑃𝑃𝑖𝑘𝑡 with the powers of the running variable 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡. Moreover, 

our local linear estimation controlled for the covariates (𝑿𝒊𝒌𝒕) and county and period fixed 

effects (𝝂𝒌 and 𝝀𝒕), using a two-step procedure as in He et al. (2020) and as suggested by Lee 

and Lemieux (2010). In the first step, the outcome variable was regressed against the covariates 

and fixed effects to derive the residuals. In the second step, the non-parametric estimation was 

performed using the residuals (instead of the original values) of the outcome variable. This 

further enhanced the comparability between our parametric and non-parametric estimation 

because both approaches accounted for the covariates and fixed effects. Lastly, our non-

parametric estimation selected the bandwidth in the same way as our parametric estimation.  

 

4.2   Covariate continuity tests 

 

As mentioned, the validity of the spatial RDD depends critically on the covariate continuity 

assumption (namely that all relevant covariates before the introduction of the NFPP are 

continuously distributed across the NFPP borders). This assumption was tested using the 

parametric and non-parametric procedures described, where the outcome variable (forest cover) 

was replaced by each of the 12 baseline covariates (as listed in Table 1) individually, giving 

rise to 12 models.  

 

The null hypothesis is that each covariate is continuously distributed across the NFPP borders. 

Table 2 focuses on the results of the nonparametric model and does not control for other 

covariates (𝑿𝒊𝒌𝒕), following Ambrus et al. (2020) and Moz-Christofoletti et al. (2022). These 

tests were performed using the average of the 12 covariates’ optimal bandwidths computed 

using the algorithm of Calonico et al. (2014). These tests were repeated three times, using the 

full sample and the two sub-samples by forestland ownership type, respectively. In addition, 

we repeated these tests using the parametric approach which has a linear polynomial of 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 (P = 1) and does not control for other covariates (𝑿𝒊𝒌𝒕). The results are reported 

in Table S4 in the Appendix.  

 

Starting with the nonparametric tests for the full sample, the estimates in Table 2 (Panel A) 

find no statistically significant discontinuity in the 12 covariates prior to the NFPP. In the full 

sample, for all 12 covariates, the estimated discontinuity at the NFPP borders has a p-value 

above 10% (10 covariates have a p-value above 35%). For 10 covariates, the estimated 

discontinuity is less than 10% (in absolute value) of the mean outside the NFPP borders within 

the bandwidth. We have similar findings from the parametric tests, as can be seen in Table S4 
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(Panel A). For all 12 covariates, the estimated discontinuity at the NFPP borders has a p-value 

above 10% (9 covariates have a p-value above 40%). For 8 covariates, the estimated 

discontinuity is less than 10% (in absolute value) of the mean outside the NFPP borders within 

the bandwidth. This provides supporting evidence for the covariate continuity assumption of 

the Spatial RDD.  

 

We present the results of the tests for state and collective forestland in Panels B and C of Tables 

4 and S4, respectively. The main findings are qualitatively similar to those for the full sample: 

for all 12 covariates, the estimated discontinuity at the NFPP borders has a p-value above 10%; 

the magnitude of the estimated discontinuity is mostly less than or comparable to 10% (in 

absolute value) of the mean outside the NFPP borders within the bandwidth. In other words, 

we found no evidence of pre-NFPP discontinuity in the 12 covariates for the state and collective 

forestland subsamples.  

 

 

 

 

 



 13 

 

 

Table 2. Covariate continuity tests: nonparametric approach 
Panel A. Full sample 

 

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 
Altitude Slope  

Protected 

area 

Night 

lights 
Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin 
Age  

State 

forest 

RDD treatment 

effect 

46.725 -0.098 1.405 0.134 -0.021 -73.621 -0.293 -1.950 0.102 -0.016 0.091 0.031 

(75.687) (0.079) (7.409) (0.200) (0.065) (103.434) (1.535) (9.371) (0.079) (0.052) (0.105) (0.137) 
 [0.537] [0.214] [0.850] [0.503] [0.753] [0.477] [0.849] [0.835] [0.194] [0.757] [0.820] [0.388] 

             

Mean outside  

     NFPP borders 
727.876 3.066 63.132 0.940 0.258 806.566 8.919 26.833 0.238 0.708 1.822 0.429 

Degree of  

     polynomial 
Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Bandwidth (km) 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 

Obs. 2397 2397 2397 2397 2397 2397 2397 2397 2397 2397 2397 2397 

 
Panel B. State forestland 

 

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

 Altitude Slope  
Protected 

area 

Night 

lights 
Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin 
Age  

RDD treatment 

effect 

77.413 -0.122 -8.982 0.208 -0.052 31.114 0.937 5.563 0.117 0.006 -0.119 

(97.633) (0.125) (10.204) (0.248) (0.113) (30.954) (0.669) (6.038) (0.129) (0.076) (0.164) 

 [0.428] [0.329] [0.379] [0.401] [0.645] [0.315] [0.161] [0.357] [0.367] [0.936] [0.470] 

            

Mean outside  

     NFPP borders 
686.135 3.084 64.990 0.971 0.255 632.121 5.416 11.557 0.199 0.737 2.106 

Degree of  

     polynomial 
Linear  Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Bandwidth (km) 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 

Obs. 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 1063 
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Panel C. Collective forestland 

 

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

 Altitude Slope  
Protected 

area 

Night 

lights 
Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin 
Age  

RDD treatment 

effect 

33.897 -0.055 5.975 0.205 -0.042 -97.029 -1.064 -3.549 0.106 -0.034 0.021 

(94.690) (0.086) (7.757) (0.350) (0.073) (137.365) (1.483) (9.902) (0.089) (0.075) (0.092) 

 [0.720] [0.524] [0.441] [0.558] [0.569] [0.480] [0.473] [0.720] [0.233] [0.653] [0.823] 

            

Mean outside  

     NFPP borders 
850.579 2.986 56.777 0.860 0.194 969.758 11.448 42.353 0.302 0.720 1.575 

Degree of  

     polynomial 
Linear  Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Bandwidth (km) 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 

Obs. 1369 1369 1369 1369 1369 1369 1369 1369 1369 1369 1369 

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the table represents a separate RDD regression 

for each covariate. (iii) *** p<0.01, ** p<0.05, * p<0.1. 
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4.3   Manipulation tests 

 

Another important assumption of the RDD approach is that the assignment of the treatment 

cannot be precisely manipulated by those being treated (Lee and Lemieux 2010). In this study, 

this “imprecise manipulation assumption” requires that forestland managers are unable to 

precisely self-select forestland into or out of the NFPP program.  

 
We tested this assumption using the manipulation test proposed by Cattaneo et al. (2020). The 

intuition is that, if forestland managers were able to precisely self-select forestland into (or out 

of) the NFPP program, there would be more forestland plots just inside (or outside) the NFPP 

borders. In other words, the imprecise manipulation assumption would have been violated had 

there been a statistical discontinuity in the distribution of forestland plots around the NFPP 

borders. Our manipulation test consisted of using a local polynomial density estimator to 

estimate the probability density functions of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 on the two sides of the NFPP borders 

separately and testing whether there exists a statistical discontinuity at the NFPP borders. The 

null hypothesis is that 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 is continuously distributed across the NFPP borders. We 

repeated the manipulation test for the full sample and the state and collective forestland 

subsamples.  

 

Figure 2 presents the estimated distributions of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 and Table 3 reports the results of 

the manipulation tests. It can be seen in Figure 2 that the 95% confidence intervals10 of the 

probability density curves largely overlap at the NFPP borders (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 = 0), providing 

no evidence of statistical discontinuity in the distribution of forestland plots near the NFPP 

borders.  In Table 3, for the full sample, the test statistics turned out to be 0.524 with a p-value 

= 0.600, indicating that the null hypothesis (of continuous distribution) cannot be rejected at 

conventional statistical significance levels (e.g., p-value < 0.10). We have qualitatively similar 

findings for the state and collective forestland subsamples, which lend further support to the 

validity of the RDD in our case.  

 

 
 

 

 

 

 

 

 

 

 

 

 
10 Confidence intervals in Figure 2 were robust bias-corrected and are hence not necessarily centered around the 

point estimates of the probability density (Cattaneo et al. 2020).  
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Panel A. All forestland Panel B. State forestland 

  

 

Panel C. Collective forestland 

 

 

 

Figure 2. Manipulation test plots 

 
Notes: (i) The histograms visualize the distributions of the running variable on both sides of the NFPP borders. 

The solid lines represent the estimated probability density functions of the running variable (point estimates), 

whereas the dashed lines show the robust bias corrected confidence intervals at the 95% level; (ii) The bandwidths 

in the manipulation tests were computed using the MSE-optimal bandwidth selector proposed by Calonico et al. 

(2014). (iii) A triangular kernel function was used to construct the local polynomial density estimator.  

 

 

Table 3. Manipulation test results 

 Bandwidths (h) Observation  

Test 

statistic p-value 

All forestland  43.889 1798 0.524 0.600 

State forestland  26.988 671 -0.571 0.568 

Collective forestland  61.773 1123 -0.280 0.779 
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5   Results 
 

5.1   Visual evidence 

 

Figure 3 plots forest cover against the running variable (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡), for the full sample and 

by forestland ownership regimes, using the second and third periods of our panel data (after 

the introduction of the NFPP). This provides a preliminary visual assessment of whether the 

NFPP has led to a discontinuity of forest cover at the program’s borders. In Figure 3, the 

running variable is partitioned into evenly spaced bins, as suggested by Calonico et al., (2014), 

and each circle represents the average forest cover within each bin. In addition, the curves in 

Figure 3 show the predicted values from a quadratic regression of forest cover on the running 

variable. This is the preferred functional form for the parametric RDD regressions, which will 

be discussed shortly.  

 

As can be seen in Panel A, for the full sample, the data exhibits a visible jump in forest cover 

at the NFPP borders (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 = 0). More specifically, the average forest cover (%) just 

inside the NFPP borders (on the right side of the vertical axis) is almost 4% (in relative terms) 

higher than that just outside the NFPP borders (on the left side of the vertical axis).  

 

Panels B and C visualize the data for state and collective forestland separately. For state 

forestland, Panel B finds no discernible discontinuity in forest cover at the NFPP borders. In 

contrast, for collective forestland, Panel C finds a visible and sizable discontinuity in forest 

cover at the NFPP borders: the average forest cover just inside the NFPP borders is about 5% 

(in relative terms) higher than that just outside the NFPP borders. Hence, Figure 3 provides 

some preliminary visual evidence that the NFPP has had a moderate positive effect on forest 

cover, especially for collective forestland. These patterns were further tested using more formal 

RDD analyses as will be reported in Sections 5.2 and 5.3.  
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Panel A. All forestland Panel B. State forestland 

  
 

Panel C. Collective forestland 

 

 

Figure 3.  RDD plots: forest cover against the running variable 

 

 
Notes: (i) The solid curves are predicted forest cover from a quadratic regression of forest cover on the running variable. The dashed 

curves are 95% confidence intervals of predicted forest cover. Values inside (outside) the NFPP borders are in black (gray). (ii) The 

solid circles represent average forest cover within 50-meter bins of the running variable and the hollow circles give average forest 

cover within 25-meter bins.  
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5.2   Main analysis: Overall effect of the NFPP 

 

Table 4 presents the formal RDD regression estimates of the effect of the NFPP program on 

forest cover for all forestland regardless of ownership type. Columns (1) and (2) contain the 

estimates of Equation 1 with and without covariates. Both models control for county and 

period fixed effects, as suggested by Athey and Imbens (2017), and contain a quadratic 

polynomial of the running variable 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 , because the quadratic polynomial 

outperforms the linear and cubic polynomials according to the AIC. The bandwidth was 

computed for the two models separately using the MSE optimal bandwidth selection approach 

described in Section 4. Columns (3) and (4) present the non-parametric estimates derived from 

a local linear estimator using a triangular kernel as per Calonico et al. (2014). 

 

We place more emphasis on estimates with a full set of controls (Columns 2 and 4). It can be 

seen that the parametric and non-parametric estimates are highly comparable in terms of both 

the magnitude and statistical significance of the treatment effect. The two estimates (Columns 

2 and 4) suggest that forest cover just inside the NFPP borders is nearly 6% 11 higher on average 

(in relative terms) than that just outside. Turning to Columns 1 and 3, it can be seen that the 

less controlled estimates find a slightly larger positive effect of the NFPP on forest cover. 

Overall, the four estimates consistently suggest that the NFPP has a moderate positive effect 

on forest cover on average (regardless of forestland ownership type).  

 

We then adopted three alternative bandwidths (20km, 30km and 40km) and repeated the two 

most controlled estimation procedures (that gave the estimates in Columns 2 and 4 in Table 4). 

Table S1 in the Appendix presents the results derived using the three alternative bandwidths. 

It can be seen that the main findings are considerably stable: forest cover just inside the NFPP 

borders is about 6% (5.8%–6.3%) higher on average (in relative terms) than that just outside.  

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
11 3.659%/63.460% = 5.8%; 3.773%/63.460% = 5.9%.  
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Table 4. Overall effect of the NFPP on forest cover 

 

 Parametric estimates Non-Parametric estimates 

 (1) (2) (3) (4) 

RDD treatment effect 4.494* 3.659* 4.869*** 3.773*** 

 (2.449) (0.923) (1.108) (1.116) 

 [0.069] [0.058] [0.000] [0.013] 

     
Covariates No Yes No Yes 

County fixed effects Yes Yes Yes Yes 

Period fixed effects Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Linear Linear 

Adjusted R2 0.213 0.274   
Bandwidth (km) 46.025 32.426 46.025 32.426 

Mean outside NFPP borders 63.091 63.460 63.091 63.460 

Obs. 5544 4365   5544 4365   

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted an MSE 

optimal bandwidth. (iii) *** p<0.01, ** p<0.05, * p<0.1. 

 

 

5.3   Main analysis: Heterogeneous effects of the NFPP by forestland property right regime 

 

Table 5 compares the effects of the NFPP on state and collective forestland. These estimates 

were derived from repeating the main RDD analysis using the state and collective forestland 

subsamples separately. Panel A of Table 5 illustrates the impact of the NFPP on state forestland 

whereas Panel B shows the impact on collective forestland. The estimates suggest that the 

NFPP has a positive effect on forest cover for both state and collective forestland, although this 

positive effect is more pronounced for collective forestland.  

 

In the model that includes the full set of controls (Column 2 in Panels A and B) we find that 

the estimated treatment effect for collective forestland is 82% higher than that for state 

forestland. Moreover, the estimate for collective forestland has a lower p-value (8.7%) than 

that for state forestland (45.3%). Similarly, the equivalent nonparametric estimates (Column 4 

in Panels A and B) find that the NFPP has a more favorable effect for collective forestland than 

for state forestland, although the gap becomes smaller in size. We have qualitatively similar 

findings from the models without the full set of controls for both of the parametric and non-

parametric estimates (Columns 1 and 3 in Panels A and B).  

 

In addition, we repeated the parametric and non-parametric estimations using alternative 

bandwidths (20km, 30km and 40km). As shown in Table S2 in the Appendix, the treatment 

effect estimates for collective forestland have consistently larger magnitudes and lower p-

values than those for state forestland, which suggests that the NFPP has better environmental 

outcomes in collective forestland than in state forestland.  
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Table 5. Heterogeneous effects of the NFPP on state and collective forestland 
 

Panel A. State forestland 

 Parametric estimates Non-Parametric estimates 

 (1) (2) (3) (4) 

RDD treatment effect 2.176 2.926 3.972*** 2.931** 

 (2.842) (3.876) (1.514) (1.400) 

 [0.446] [0.453] [0.009] [0.036] 

     

Covariates No Yes No Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Linear Linear 

Adjusted R2 0.200 0.267   

Bandwidth (km) 41.552 31.729 41.552 31.729 

Mean outside NFPP 

borders 69.654 70.001 69.654 70.001 

Obs. 2590 2149 2590 2149 

 

 

Panel B. Collective forestland 

 Parametric estimates Non-Parametric estimates 

 (1) (2) (3) (4) 

RDD treatment effect 4.604* 5.339* 5.554*** 5.886*** 

 (2.535) (3.087) (1.832) (2.010) 

 [0.072] [0.087] [0.001] [0.003] 

     

Covariates No Yes No Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Linear Linear 

Adjusted R2 0.223 0.271   

Bandwidth (km) 39.306 31.546 39.306 31.546 

Mean outside NFPP 

borders 58.284 58.727 58.284 58.727 

Obs. 2471 2140 2471 2140 

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted an MSE 

optimal bandwidth. (iii) *** p<0.01, ** p<0.05, * p<0.1. 
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5.4   Placebo tests 

 

Lastly, we performed a series of placebo tests to explore whether the aforementioned 

discontinuity in forest cover at NFPP borders (especially for collective forestland) might 

represent some random discontinuity in forest cover across space. Following Ebenstein et al. 

(2017), we displaced the cutoff of the running variable 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘𝑡 from 0 (NFPP borders) to 

±20km and ±30km separately.12 We repeated the RDD analyses for each of these false cutoffs. 

 

Table 6 presents the estimated discontinuity in forest cover at the four false cutoff points, for 

the full sample (Panel A) and for the state and collective forestland subsamples (Panels B and 

C). These estimates were derived from the model with a full set of controls with the same 

specification and bandwidth as in the main RDD analysis (Column 2, Table 3).  

 

For the full sample, it can be seen that the discontinuity estimates at the four false cutoff points 

have a small magnitude (lower than 3% of the mean value outside the false cutoff) and a high 

p-value (above 36%). Moreover, we have qualitatively similar findings for the state and 

collective forestland subsamples. Six of the eight estimates have a p-value above 55% and all 

discontinuity estimates have a small magnitude (lower than 3% of the mean value outside the 

false cutoff). We repeated the placebo tests using the non-parametric estimation as in the main 

RDD analysis (Column 4, Table 3). The results are shown in Table S3 in the Appendix. These 

non-parametric estimates are smaller in size and statistically insignificant. We found no 

evidence for the presence of random discontinuity in forest cover at the four false cutoff points. 

 

 

Table 6. Placebo tests: parametric estimates 

 

Panel A. full sample 

  False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

  20 km -20 km -30 km  +30 km 

  (1) (2) (3) (4) 

RDD treatment effect -1.012 -1.714 0.884 0.690 

  (1.782) (1.867) (1.570) (3.310) 

  [0.571] [0.361] [0.575] [0.835] 

     

Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Quadratic Quadratic 

Adjusted R2 0.309 0.275 0.279 0.305 

Bandwidth (km) 32.426 32.426 32.426 32.426 

Mean outside false cut-off 62.958 64.683 66.817 63.002 

Obs. 3612 4611 4398 2928 

 

 

Panel B. State forestland  

 
12 We did not displace the cutoff to ±10km to avoid picking up the discontinuity in forest cover at the original 

cutoff.  
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 False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

 20 km -20 km -30 km  +30 km 

 (1) (2) (3) (4) 

RDD treatment effect -1.613 -0.059 1.396 1.604 

 (3.474) (2.460) (2.355) (6.489) 

 [0.644] [0.981] [0.555] [0.806] 

     

Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Quadratic Quadratic 

Adjusted R2 0.265 0.264 0.275 0.249 

Bandwidth (km) 31.729 31.729 31.729 31.729 

Mean outside false cut-off 69.260 71.035 74.754 69.241 

Obs. 1655  2412  2315   1205  

 

 

Panel C. Collective forestland  
 

 False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

 20 km -20 km -30 km  +30 km 

 (1) (2) (3) (4) 

RDD treatment effect -0.548 -0.229 -0.996 0.249 

 (2.697) (2.655) (2.306) (4.261) 

 [0.839] [0.227] [0.667] [0.147] 

     
Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Quadratic Quadratic 

Adjusted R2 0.256 0.200 0.191 0.254 

Bandwidth (km) 31.546 31.546 31.546 31.546 

Mean outside false cutoff 58.307 59.638 61.171 58.579 

Obs. 1888 2109  1966  1597  

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted an MSE 

optimal bandwidth. (iii) *** p<0.01, ** p<0.05, * p<0.1. 

 

 

 

6   Discussion and conclusion  
 

The NFPP aims to conserve natural forests and restore forest resources, mainly by restricting 

logging and financing afforestation. The program is one of the largest forest conservation and 

restoration programs in the world. However, there is a paucity of formal empirical evidence on 

the program’s environmental outcomes, which contrasts with the sheer size of the program’s 

geographic coverage and financial investment. We contribute to this literature by undertaking 
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the first regression discontinuity study on the environmental impacts of the NFPP, which adds 

to a very limited body of quasi-experimental literature on this topic (e.g., Brandt et al., 2015; 

Ren et al., 2015; Shi et al. 2017; Zhang et al. 2011). Compared to previous studies, the present 

study can better identify changes in forest cover caused by the NFPP, rather than by other 

observed and unobserved factors that correlate with the program. This is achieved using spatial 

RDD models that control for observed covariates and county and period fixed effects. 

Moreover, the NFPP shares some key characteristics of forest Protected Areas (PAs) (e.g., the 

top-down exogenous assignment of logging restrictions), and of forest-based Payments for 

Ecosystem Services (PES) programs (e.g., financial support for forest conservation and 

restoration). Therefore, this study also adds to the quasi-experimental literature on the 

environmental impacts of forest-based PAs and PES instruments (e.g. Alix-Garcia et al. 2015, 

Blackman et al. 2015, Herrera et al. 2019 and Sims and Alix-Garcia 2017). Our primary finding 

is that the NFPP has a moderate positive impact on forest cover overall. 

 

Second, our study is also one of the first quasi-experimental studies in the developing world to 

compare the performance of a large-scale forest conservation initiative across different 

forestland property right regimes, which speaks to studies such as those by Alix-Garcia et al. 

(2012) and Bonilla-Mejía and Higuera-Mendieta (2019). Our empirical results find that the 

NFPP has a stronger positive effect for collective forests than for state forests. Note that our 

results and findings were drawn from data for four provinces (out of a total of 18 provinces 

affected by the NFPP) and thus may not be fully generalizable to other regions. However, our 

studied regions are still fairly representative both in terms of ecological and social 

characteristics.  

 
The NFPP includes different provisions across property right regimes. In particular, the 

financial and administrative support for afforestation on collective forestland is not as strong 

as that for state forestland. However, our results indicate that the NFPP has induced a more 

evident increase in forest cover on collective forestland than on state forestland. These state-

owned forests can be characterized as a type of common property resource shared within each 

firm and with government bodies, whereas collective forests are in essence semi-private 

resources managed by individual rural households (Xu et al. 2004; Yi et al. 2014). Standard 

economic theory and empirical evidence tend to suggest that China’s state-owned enterprises 

are often outperformed by their private counterparts because state-owned resources often have 

common property or even public good features which are typically associated with overuse and 

underinvestment (Jefferson 1998; Lin et al. 1998; Liu and Xu 2019; Xu et al. 2004). The 

findings in this study are in line with this hypothesis.  

 

Therefore, the NFPP might be able to achieve enhanced performance by (re)directing larger 

proportions of the program’s funds and forest restoration activities towards collective forest 

managers. China’s state-owned enterprises have long been accused of unfairly crowding out 

private sectors’ access to capital and other factors of production (Lin et al. 1998). There could 

be another such situation in the case of the NFPP, because our empirical results suggest that 

collective forest managers seem to be more productive in forest conversation and restoration. 

In theory and in a perfectly competitive setting, the optimal allocation of the NFPP’s resources 

would entail collective forest managers receiving more resources and undertaking more 

afforestation, until collective and state forest managers have the same level of marginal output 

(e.g., the increase in forest cover) with respect to the NFPP resources they receive. This implies 

considerable scope for the NFPP to enhance its performance by allowing more resources to 

flow to their most productive use, which is likely to be the conservation and restoration of 

collective forests.  
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Furthermore, our findings provide insights for the ongoing institutional reform of China’s state 

forest property regime and SOFEs. Under collective forests with semi-private forest rights 

arrangements, the same household bears the costs of forestry input and receives the benefits 

that it produces, which avoids the kind of adverse externalities in state forests where individual 

SOFE workers contribute differently to forestry activities, but the ensuing benefits are shared 

with the entire SOFE or even with government bodies. Privatizing state forests and allocating 

forest rights to individual SOFE workers is a long-standing yet heavily debated option for 

institutional reform. A less radical approach could be a Contract Management Responsibility 

System (CMR) which uses fixed-term contracts to better align individual SOFE workers’ input 

to and benefits from state forest resources, or at least the forest conservation and restoration 

activities undertaken under the NFPP. Some SOFEs have adopted some form of CMRS which 

typically assign to individual SOFE workers the responsibility for patrolling specific areas of 

state forests and the right to harvest non-timber forest products in those areas (Liu and Xu 

2019). There is scope to further develop the SOFEs’ CMRS by assigning more substantial 

forestry management responsibilities and benefits to individual SOFE workers, such as 

afforestation and timber harvests. 
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Appendix 
 

Table S1. Overall effect of the NFPP on forest cover: Alternative bandwidths 

 

 Parametric estimates  Non-Parametric estimates 

 (1) (2) 

 

(3) (4) (5) 

 

(6) 

RDD treatment effect 4.161** 4.006** 

 

4.357* 4.989*** 3.707** 

 

5.352*** 

 (0.879) (0.846) 

 

(1.522) (1.463) (1.575) 

 

(1.406) 

 [0.042] [0.042] 

 

[0.087] [0.001] [0.019] 

 

[0.001] 

       

Covariates Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic 

 

Quadratic Linear Linear 

 

Linear 

Adjusted R2 0.271 0.275 

 

0.287   

 

Bandwidth (km) 40.000 30.000 

 

20.000 40.000 30.000 

 

20.000 

Mean outside NFPP 

borders 63.315 63.777 

 

64.196   63.315 63.777 

 

64.196  

Obs. 5019    4158  

 

3150 5019    4158  

 

3150 

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted alternative 

bandwidths. (iii) *** p<0.01, ** p<0.05, * p<0.1. 
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Table S2. Heterogeneous effects of the NFPP on state and collective forestland: 

Alternative bandwidths 

Panel A. State forestland  

 

 Parametric estimates  Non-Parametric estimates  

 (1) (2) (3) (4) (5) (6) 

RDD treatment effect 4.187 3.560 4.122 3.632** 3.023** 4.011** 

 (3.698) (3.873) 

 

(4.321) (1.292) (1.433) 

 

(1.634) 

 [0.261] [0.361] 

 

[0.344] [0.042] [0.035] 

 

[0.014] 

       

Covariates Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Quadratic Linear Linear Linear 

Adjusted R2 0.266 0.271 

 

0.279   

 

Bandwidth (km) 40.000 30.000 20.000 40.000  30.000 20.000 

Mean outside NFPP 

borders 69.700 70.185 

 

70.824 69.700 70.185 

 

70.824 

Obs. 2531   2072  1578 2531   2072  1578 

 

Panel B. Collective forestland 

 

 Parametric estimates  Non-Parametric estimates 

 (1) (2) 

 

(3) (4) (5) 

 

(6) 

RDD treatment effect 4.357* 5.356 

 

6.857** 5.523*** 5.774*** 

 

5.864*** 

 (2.522) (3.238) 

 

(3.237) (1.822) (2.072) 

 

(1.725) 

 [0.087] [0.102] 

 

[0.037] [0.002] [0.005] 

 

[0.001] 

       

Covariates Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes Yes Yes 

Degree of polynomial Quadratic Quadratic Quadratic Linear Linear Linear 

Adjusted R2 0.229 0.226 

 

0.239   

 

Bandwidth (km) 40.000 30.000 

 

20.000 40.000 30.000 

 

20.000 

Mean outside NFPP borders 58.311 58.771 

 

59.012 58.311 58.771 

 

59.012 

Obs. 2488  2086  

 

1568 2488  2086  

 

1568 

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted alternatives 

bandwidths. (iii) *** p<0.01, ** p<0.05, * p<0.1. 
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Table S3. Placebo tests: nonparametric estimates 

 

Panel A. Full sample 

 

  False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

  -20 km +20 km -30 km  +30 km 

  (1) (2) (3) (4) 

RDD treatment effect 0.051 -0.536 1.940 1.141 

  (1.458) (1.097) (1.817) (1.254) 

  [0.972] [0.625] [0.286] [0.363] 

       

Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Mean outside false 

cut-off 69.260 71.035 74.754 69.241 

Degree of Polynomial LLR LLR LLR LLR 

Bandwidth (km) 32.426 32.426 32.426 32.426 

Obs. 3612 4611 4398 2928 

 

 

Panel B. State forestland 

 
  False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

  -20 km +20 km -30 km  +30 km 

  (1) (2) (3) (4) 

RDD treatment effect 0.786 0.974 2.524 0.210 

  (2.010) (2.037) (2.628) (2.101) 

  [0.696] [0.632] [0.337] [0.920] 

       

Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Mean outside false 

cut-off 69.260 71.035 74.754 69.241 

Degree of Polynomial LLR LLR LLR LLR 

Bandwidth (km) 31.729 31.729 31.729 31.729 

Obs. 1655  2412  2315   1205  
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Panel C. Collective forestland 

 

 

  False cutoff 1 False cutoff 2 False cutoff 3  False cutoff 4 

  -20 km +20 km -30 km  +30 km 

  (1) (2) (3) (4) 

RDD treatment effect 0.280 -1.264 2.173 -2.297 

  (1.323) (2.502) (2.587) (1.820) 

  [0.832] [0.613] [0.401] [0.207] 

       

Covariates Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Period FE Yes Yes Yes Yes 

Mean outside false cut-

off 58.307 59.638 61.171 58.579 

Degree of polynomial LLR LLR LLR LLR 

Bandwidth (km) 31.546 31.546 31.546 31.546 

Obs. 1888 2109  1966  1597  

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the 

table represents a separate RDD regression which controlled for a specific set of variables and adopted an MSE 

optimal bandwidth. (iii)  *** p<0.01, ** p<0.05, * p<0.1. 
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Table S4. Covariate continuity tests: parametric approach 

 

Panel A. Full sample 

 

 

  

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 Altitude Slope  

Protected  

area 

Night 

lights Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin Age  

State 

forest 

RDD treatment effect 90.989 -0.126 3.654 -0.230 -0.023 -65.568 0.113 -0.804 0.124 -0.008 -0.009 0.092 

 (96.750) (0.083) (9.172) (0.285) (0.077) (111.885) (1.841) (10.146) (0.090) (0.060) (0.139) (0.118) 

 [0.348] [0.132] [0.691] [0.420] [0.769] [0.559] [0.951] [0.937] [0.168] [0.892] [0.946] [0.439] 

                          
Mean outside NFPP 

borders 727.876 3.066 63.132 0.940 0.258 806.566 8.919 26.833 0.238 0.708  1.822 0.429 

Degree of polynomial Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Adjusted R2 0.052 0.002 0.013 0.003 < 0.001 0.002 0.001 0.008 0.030 0.019 0.003 0.014 

Bandwidth (km) 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 68.170 

Obs. 2397  2397  2397  2397  2397  2397  2397  2397  2397  2397  2397  2397  
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Panel B. State forestland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

 Altitude Slope  

Protected 

area 

Night 

lights Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin Age  

RDD treatment effect 90.096 -0.151 -3.990 -0.139 -0.067 23.881 0.883 6.432 0.108 0.015 -0.087 

 (108.675) (0.143) (12.442) (0.342) (0.107) (39.286) (0.826) (7.268) (0.140) (0.088) (0.160) 

 [0.409] [0.294] [0.749] [0.685] [0.534] [0.545] [0.287] [0.378] [0.443] [0.865] [0.588] 

            
Mean outside NFPP 

borders 686.135 3.084 64.990 0.971  0.255  632.121  5.416 11.557   0.199 0.737 2.106 

Degree of polynomial Linear  Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Adjusted R2 0.066 0.001 0.002 0.005 0.012 0.001 0.005 0.024 0.048 0.018 0.003 

Bandwidth (km) 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 56.630 

Obs. 1063  1063 1063 1063  1063 1063 1063  1063 1063 1063 1063 
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Panel C. Collective forestland 

 

  (1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

 Altitude Slope  

Protected 

area 

Night 

lights Accessibility Precipitation Temperature Soil  

Ecological 

forest 

Forest 

origin Age  

RDD treatment effect 60.396 -0.036 2.970 -0.003 -0.070 -74.393 -1.149 -2.599 0.129 -0.025 -0.027 

 (102.888) (0.097) (8.582) (0.384) (0.089) (151.038) (1.648) (10.872) (0.087) (0.081) (0.106) 

 [0.558] [0.713] [0.730] [0.993] [0.437] [0.623] [0.487] [0.811] [0.140] [0.758] [0.803] 

            
Mean outside NFPP 

borders 850.579  2.986 56.777 0.860 0.194 969.758 11.448 42.353 0.302 0.720 1.575 

Degree of polynomial Linear  Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 

Adjusted R2 0.059 0.006 0.046 

< 

0.001 0.011 0.040 0.022 0.042 0.012 0.019 0.030 

Bandwidth (km) 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 84.310 

Obs. 1369 1369 1369 1369 1369 1369 1369 1369 1369 1369 1369 

 
Notes: (i) Standard errors clustered by county are in parentheses. P-values are in brackets. (ii) Each column in the table represents a separate RDD regression for each covariate. 

(iii) *** p<0.01, ** p<0.05, * p<0.1. 
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