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Which volatility model for option valuation in China? Empirical evidence from
SSE 50 ETF options
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Economics, Beijing, China

ABSTRACT
In early 2015, China launched its first exchange-traded option, the Shanghai Stock Exchange (SSE)
50 ETF option, to meet the increasing demand for financial derivatives. In this article, we provide an
intensive empirical investigation of popular discrete-time volatility models in terms of their pricing
performance when applied to SSE 50 ETF options. We find that the newly developed models with
realized measures significantly outperform conventional GARCH-type models based on daily
returns only. In contrast with the U.S. market, our empirical results suggest that the leverage effect
is very weak in the Chinese option market.
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I. Introduction

Options are one of the most important types of
fundamental derivatives in the global market.
They are widely used in areas such as risk manage-
ment and the formulation of structured products.
However, exchange-based options were not avail-
able in the Chinese market until nearly 25 years
after the establishment of the Shanghai and
Shenzhen stock exchanges, namely when the
Shanghai Stock Exchange (SSE) 50 ETF Option
was launched in February 2015. As the only domes-
tically traded exchange-based option in the market,
the trading volume and open interest of the 50 ETF
option have increased nearly 70-fold over the past 3
years and the number of qualified investors has
increased almost 100-fold1

There are several reasons why it is important to
examine the 50 ETF option more closely. First, the
option covers a great amount of market capitaliza-
tion. The underlying asset of the option is a highly
liquid ETF that covers the 50 largest blue-chip stocks
traded on the SSE, which constitute 25% of the SSE’s
market capitalization. The total capitalization of the
Chinese stock market ranks third2 worldwide and
first among emerging markets. Second, the option

market in China is different from its developed
market counterparts in many ways. The option is
a physically delivered ETF option rather than a cash-
settled index option. The contract is adjusted with
dividends from the underlying asset, which is
uncommon in standard option contracts. The num-
ber of available strikes is quite limited and the cost of
short selling is much higher than in the U.S. market.
Third, the commonly known stylized facts may not
be applicable to the market. The implied volatility is
much higher than in the U.S. market and the implied
smirk is weak or skewed to the right rather than the
left (Yue et al. 2019). The fact that 30 component
stocks of the ETF are also included in the MSCI
China A Onshore Index suggests that our discussion
may also have global interest. Among many poten-
tial areas of interest, this article focuses on the pri-
cing performance among discrete-time volatility
models for the 50 ETF option, as it is possible that
the outlined differences have implications for the
model structures and data.

Research on option-pricing models relies heavily
on models to model volatility dynamics. Aside
from continuous-time models (such as Black and
Scholes 1973; Heston 1993), discrete-time volatility
models have also been considered as a platform for

CONTACT Tianyi Wang tianyiwangmath@gmail.com Department of Financial Engineering, School of Banking and Finance, University of International
Business and Economics, Beijing 100029, P.R. China
1The number of qualified investors on the first trading day in 2015 was 2626. This number increased to 260,040 by the early 2018..
2China’s market surpassed Japan in market value in November 2014 to become the world’s second-largest and kept that rank until late August 2018. Despite
the 2018 crash, China’s equity market remains among the top three equity markets and is the largest emerging market worldwide.
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option-pricing practice. Motivated by the success
of GARCH models in financial econometrics,
Duan (1995) pioneered using GARCH models3 as
a pricing platform for options, and Heston and
Nandi (2000) provided a structure that made
a closed-form pricing formula for European
options available. Christoffersen and Jacobs
(2004) highlighted the advantages of GARCH
option-pricing models in terms of estimation and
time efficiency for pricing large-scale option
panels4 These studies have typically focused on
the U.S. option market and have found that better
results can be obtained from models which include
the leverage effect and joint estimation of both the
underlying and the option panels. Based on the
development of model-free estimations of daily
variance (Andersen and Bollerslev 1998), a list of
new models was proposed (Andersen et al. 2003;
Corsi 2009; Hansen, Huang, and Shek 2012;
Hansen and Huang 2016). Some of these models
have been tailored for option-pricing purposes;
they include the GARV model (Christoffersen
et al. 2014), the Realized GARCH model (Huang,
Wang, and Hansen 2017), and the HAR-type mod-
els (Majewski, Bormetti, and Corsi 2015). For all of
these models, researches have highlighted the
importance of realized measures in improving the
pricing performance of discrete-time models.

There are several papers comparing the pricing
performance across different models. Bakshi, Cao,
and Chen (1997) compared a series of continuous-
time volatility models and highlighted important
model features such as the stochastic volatility and
the jump components. Christoffersen and Jacobs
(2004) compared a series of GARCH models using
the S&P500 options and argued that features such
as volatility clustering and the leverage effect are
crucial for a better pricing performance. Similarly,
Hsieh and Ritchken (2005) compared the affine
Heston-Nandi GARCH model (Heston and
Nandi 2000) with the non-affine NGARCH model
(Engle and Ng 1993) and found better pricing
results for the non-affine model. Other researchers
have compared models beyond the pricing of
European options (e.g. Stentoft 2011), although

most research on model comparison has focused
on the S&P500 index option.

In contrast to the extensive literature on the
U.S. option market, studies of the Chinese option
market are limited. Early studies such as Xiong and
Yu (2011) have focused on the warrant market
bubble from the late 2000. Other studies such as
Wang et al. (2017a) and Huang et al. (2018) have
discussed the implied volatility and related pre-
mium of the 50 ETF options, while Li et al. (2018)
have investigated the momentum effect on the
option and the underlying market. In terms of
pricing models, Yang (2018) proposed a GARCH
option-pricing model using daily returns with the
double exponential jump (Kou and Wang 2004)
feature. To the best of our knowledge, there is little
available extensive discussion and comparison of
volatility models for the pricing 50 ETF options.

In this article, we provide an extensive compar-
ison of both affine and non-affine discrete-time
volatility models through the lens of pricing 50
ETF options. Other than traditional GARCH mod-
els, we also include models with newly developed
high-frequency data-based volatility measures to
provide academics and practitioners with valuable
guidelines for choosing pricing platforms for the
Chinese option market.

The results show that discrete-time volatility mod-
els can be applied to price SSE 50 ETF options with
reasonable accuracy. In line with previous studies, we
find that non-affine models generally perform better
than affine models across the volatility surface. We
also find that realized measure-based models have
a better in-sample and out-of-sample pricing perfor-
mance across every sub-sample. As an extension to
the current literature on pricing options, we have also
compared the performance across different realized
measures. Although they are more preferable for
modelling and forecasting volatility, complicated-
realizedmeasures do not provide better pricing results
than the simple-realized variance. A notable differ-
ence in the leverage effect is found with the Chinese
dataset.While the presence of the leverage effect in the
U.S. option prices has been extensively confirmed
(Chernov and Ghysels 2000; Heston and Nandi

3The main contribution of this article was providing a transformation called the locally risk-neutral valuation relationship (LRNVR), which linked the physical and
risk-neutral parameters.

4Especially for those with a closed-form pricing formula..
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2000; Eraker 2004; Christoffersen and Jacobs 2004;
Majewski, Bormetti, and Corsi 2015), this effect is
much weaker in the Chinese option market. We also
find that the first year of options trading in the
Chinese market (i.e. 2015), during which the market
suffered from both extreme volatility and a severely
limited arbitrage, is distinct from subsequent years;
this suggests that the first year should either be
dropped from the sample or it should be treated
separately when testing pricing models or possible
trading strategies.

The remainder of this article is organized as
follows. In Section 2, we provide an overview of
the SSE 50 ETF option market. In Section 3, we list
the models used in the comparison. In Section 4,
we briefly introduce the estimation method used.
In Section 5, we present and discuss our empirical
results. The last section concludes the article.

II. The features of the SSE 50 ETF option market

The underlying asset of the SSE 50 ETF option is
the 50 ETF from the Hua Xia Fund Asset
Management Company. Covering the 50 largest
high-liquidity blue-chip stocks listed in the SSE,
this ETF represented around 12% of the total mar-
ket value (i.e. over 380 billion RMB) of all 170
equity ETFs in China by the end of 2018.

The 50 ETF option was introduced to investors on
9 February 2015, as a European-style physical delivery
option written on the 50 ETF. The daily trading
volume and open interest have increased dramatically
from 2015 to 2018, as seen in Figure 1(c). Compared
with the U.S. counterparts, the 50 ETF options have
several notable differences in contract specifications,
regulations and market conditions.

First, the number of strikes is limited. The 50
ETF option initially had five strikes (1 ATM, 2
OTM and 2 ITM), which increased to nine strikes
(1 ATM, 4 OTM, 4 ITM) by the beginning of 2018.
Although some new strikes will be added when the
dividend adjustment is performed, there have only
been three dividend payments so far since the
launch of the 50 ETF option.

Second, the option contract will be adjusted
when dividends are paid on the underlying ETF.
Suppose that the ex-dividend price of the ETF is S

and the cash dividend is d, the adjustment will
provide option holders with S=ðS� dÞ new con-
tracts at strike ðS� dÞK=S for one old contract at
strike K. Thus, we obtain the following equation:

S
ðS� dÞCt S� d;

ðS� dÞ
S

K;T

� �
¼ CtðS;K;TÞ

This adjustment essentially protects option holders
from dividend-induced price fluctuations. This is
not a standard feature of index options such as the
SPX options.

Third, the Chinesemarket has higher price fluctua-
tions. Figure 1(b) shows the realized volatility calcu-
lated from 5 min return of the 50 ETF; it also depicts
the China VIX calculated from the 50 ETF options.
The average realized volatility from February 2015 to
February 2018 for the ETF is around 17.74% (com-
pared with 9.44% for the SPX), and the average VIX
for the option is 24.13% (compared with 14.95% for
the U.S. VIX). The volatility premium required by 50
ETF traders, defined as VIX – Realized volatility, is
16% higher than that for the SPX options.

Finally, the short-sell cost implied by the option
prices is high in 2015 and decreases over time. The
implied short-sell cost is calculated following Ofek,
Richardson, and Whitelaw (2004) and Bilson, Kang,
and Luo (2015), using the put-call parity of European
options. If there is no constraint on short selling, then
the implied dividend yield of the put-call parity
should be close to the actual dividend yield.
Specifically, for each option pair iwith the same strike
andmaturity on day t, we derive an implied dividend
yield yiðtÞ (annualized) using the put-call parity:

CiðtÞ � PiðtÞ ¼ SðtÞe�yiðtÞT � Ke�rT

Here CiðtÞ and PiðtÞ are the prices of a call and a put
option price pair with the same maturity T and the
same strike price K. The variable r represents the
risk-free rate. There are Nt option pairs on day t
with the same strike and maturity. Figure 1(d)
reports the daily average of the implied dividend
yield yðtÞ ¼Pi yiðtÞ=Nt and the historical average
of the dividend yield. The implied dividend yields
are higher than their actual value in most cases,
especially in late 2015. This is consistent with the
actions taken by regulatory authorities to tighten the
constraints on short selling5 during the market

5For example, the China Financial Futures Exchange doubled the margin requirement for short index futures on 8 July 2015.
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crash. This gap decreases over time, indicating that
the option market has become more efficient in
recent years.

III. Model comparison

We test nine discrete-time volatility models
including the standard GARCH model engle
(Engle and Bollerslev 1986); three asymmetric
GARCH models, GJR-GARCH (Glosten,

Jagannathan, and Runkle 1993), NGARCH
(Engle and Ng 1993), and EGARCH (Nelson
1991); two Heston-Nandi GARCH models, HNG
(Heston and Nandi 2000) and HNGvd
(Christoffersen, Heston, and Jacobs 2013a);6 and
three models with realized measures: Realized
GARCH (Hansen and Huang 2016), GARV
(Christoffersen et al. 2014), and LHARG
(Majewski, Bormetti, and Corsi 2015). Table 1
describes the differences between these models.
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Figure 1. (a) The daily price of SSE 50ETF over the 2015/02 to 2018/02 sample period; (b) corresponding realized volatility (calculated
using 5-min returns) and China VIX (extracted from SSE 50ETF option prices and released by the Shanghai stock exchange); (c) trading
volume and open interest (daily average). The blue solid line in (d) is the daily average put-call parity implied dividend yield and the
red-dashed line is the actual historical average dividend yield during the sample period.

6HNG and HNGvd are both based on the Heston-Nandi GARCH model. The key difference is the way of risk neutralization. In this article, HNG refers to the model
that is risk-neutralized in line with Duan (1995) while HNGvd refers to the model that is risk-neutralized in line with (Christoffersen, Heston, and Jacobs 2013a).
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GARCH models

The GARCH models selected in this study are
based on the following GARCH-in-mean
framework:

rtþ1 ¼ r þ λ
ffiffiffiffiffiffiffiffi
htþ1

p
� htþ1=2þ

ffiffiffiffiffiffiffiffi
htþ1

p
ztþ1

where zt follows a standard normal distribution.
The parameter λ measures the required return of
an investor that is proportional to the conditional
volatility. The variance equations for the different
models are as follows:

● Standard GARCH: htþ1 ¼ β0 þ β1ht þ τ1htz2t
● GJR-GARCH: htþ1 ¼ β0 þ β1ht þ τ1
htz2t þ τ2Ifzt < 0ghtz2t

● NGARCH: htþ1 ¼ β0 þ β1ht þ τ1htðzt � τ2Þ2
● EGARCH: log htþ1 ¼ β0 þ β1 log ht þ τ1zt þ
τ2ðjztj �

ffiffiffiffiffiffiffiffi
2=π

p Þ

The first three models are linear models, whereas
the fourth is a log-linear model. Unlike the linear
GARCH models, the log-linear GARCH model
uses the standardized shock zt instead of the non-
standard shock

ffiffiffiffi
ht

p
zt to drive the volatility process.

It also imposes fewer constraints on the parameters
as a way to guaranteeing a positive conditional
variance. These advantages come at the cost of
a tendency to overreact to volatility shocks and
a much more complicated multi-period volatility
forecast formula.

Following Duan (1995), the risk-neutral
dynamics are linked to their physical counterparts
with a locally risk-neutral valuation relationship
(LRNVR). Thus, the corresponding risk-neutral
dynamics are

rtþ1 ¼ r � htþ1=2þ
ffiffiffiffiffiffiffiffi
htþ1

p
z�tþ1

where z�t follows a standard normal distribution.
All of these models are non-affine models7, and

the traditional closed-form pricing formula via
Fourier inverse transformation is not available.
Here, we follow Duan, Gauthier, and Simonato
(1999) and price the European call options using
an analytical approximation8

Heston-Nandi GARCH models

Unlike the GARCH models discussed in the pre-
vious section, the Heston-Nandi GARCH (Heston
and Nandi 2000) is an affine model with an explicit
moment-generation function that can be used to
calculate closed-form option prices. This feature
makes it a popular benchmark model in discrete-
time option pricing. The mean equation for this
model is

rtþ1 ¼ r þ ðλ� 1=2Þhtþ1 þ
ffiffiffiffiffiffiffiffi
htþ1

p
ztþ1

where zt follows a standard normal distribution.
The parameter λ measures the required return of
an investor that is proportional to the conditional
volatility. The variance equation is specified as:

htþ1 ¼ β0 þ β1ht þ τ1ðzt � τ2
ffiffiffiffi
ht

p
Þ2

The risk neutralization of this model can be done in
two different ways. The first way is Duan’s LRNVR
(referred as HNG hereafter) while the second way
relies on the variance-dependent pricing kernel
proposed by Christoffersen, Heston, and Jacobs
(2013a). The latter method explicitly provides an
additional parameter in the pricing kernel to
accommodate the variance risk premium (referred

Table 1. Summary of competing models.
G GJR NG EG HNG HNGvd RGARCH GARV LHARG

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓
Log-linear ✓ ✓
Affine ✓ ✓ ✓ ✓
With RV ✓ ✓ ✓
With VRP ✓ ✓ ✓ ✓
Closed-form pricing ✓ ✓ ✓ ✓
# of parameters 4 5 5 5 5 6 12 12 12

7In an affine model, the moment-generation function of the return process is an exponential linear function.
8The GARCH model can be viewed as a special case (τ2 ¼ 0) of NGARCH/GJR-GARCH. The approximation formula can be adapted from the one for NGARCH/
GJR-GARCH models by using the constraint τ2 ¼ 0.
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as HNGvd hereafter). The corresponding risk-
neutral dynamics are:

HNG : rtþ1 ¼ r � 1
2
htþ1 þ

ffiffiffiffiffiffiffiffi
htþ1

p
z�tþ1

HNGvd : rtþ1 ¼ r � 1
2
h�tþ1 þ

ffiffiffiffiffiffiffiffi
h�tþ1

q
z�tþ1

where z�t follows a standard normal distribution.
The variance equations are as follows:

HNG : htþ1 ¼ β0 þ β1ht þ τ1 z�t � ðτ2 þ λÞ
ffiffiffiffi
ht

p� �2

HNGvd : h�tþ1 ¼ β�0 þ β1h
�
t þ τ�1 z�t � τ�2

ffiffiffiffiffi
h�t

p� �2
where h�t ¼ χht, β�0 ¼ χβ0, τ�1 ¼ χ2τ1,
τ�2 ¼ 1=2þ ðτ2 þ λ� 1=2Þ=χ, and χ ¼
1=ð1þ 2~χτ1Þ. The parameter ~χ represents the free
parameter in the variance-dependent pricing kernel.

As the model structures of the HNGvd and the
HNG are the same under risk-neutral dynamics,
the moment-generation function provided by
Heston and Nandi (2000) can be adapted for both
models. The European option prices can be calcu-
lated using the Fourier inverse transformation.

Models with realized variance

Several models have been proposed for high-
frequency data-based volatility modelling. Within
the GARCH framework, the Realized GARCH
(Hansen, Huang, and Shek 2012; Hansen and
Huang 2016), the MEM (Engle and Gallo 2006),
and the HEAVY (Shephard and Sheppard 2010)
are commonly used complete models that can
jointly model returns and realized variance.
Reduced-form models such as HAR (Corsi 2009)
are also receiving increasing attention. In this
study, we focus on three models which have been
adapted to the option-pricing practice.

Realized GARCH (RGARCH)
Hansen, Huang, and Shek (2012) propose the
Realized GARCH model as an extension of the
GARCH-X. Hansen and Huang (2016) introduce
the Realized exponential GARCH, which describes
the joint dynamics of the returns and the realized
variance as follows:

rtþ1 ¼ r þ λ
ffiffiffiffiffiffiffiffi
htþ1

p
� 1
2
htþ1 þ

ffiffiffiffiffiffiffiffi
htþ1

p
ztþ1

log htþ1 ¼ ωþ β log ht þ τ1zt þ τ2ðz2t � 1Þ þ γσut

log xt ¼ � þ ϕ log ht þ d1zt þ d2ðz2t � 1Þ þ σut

where zt and ut are independent standard normal
random variables. The volatility-specific shock ut
enables the model to accommodate a variance risk
premium in addition to the equity premium. The last
measurement equation links ut with the realized var-
iance and makes the simple ML estimator available.

Following Christoffersen et al. (2014), we use the
exponential-affine stochastic discount factor to
transform the model into its risk-neutral
counterpart:

rtþ1 ¼ r � 1
2
htþ1 þ

ffiffiffiffiffiffiffiffi
htþ1

p
z�tþ1

log htþ1 ¼ ω� þ β log ht þ τ�1z
�
t þ τ2ðz�2t � 1Þ

þ γσu�t

log xt ¼ �� þ ϕ log ht þ d�1z
�
t þ d2ðz�2t � 1Þ þ σu�t

where z�t and u�t are independent standard normal
random variables. Moreover, ω� ¼ ωþ γσχ
þλτ2ðλ� 1Þ, �� ¼ � þ σχ þ λd2ðλ� 1Þ, τ�1 ¼
τ1 � 2λτ2, and d�1 ¼ d1 � 2λd2. The variable χ
represents the parameter associated with the var-
iance risk premium. Huang, Wang, and Hansen
(2017) provided an analytical approximation for-
mula by expanding the distribution of the cumula-
tive return based analytical higher moments and
normal distributions.

GARV
Another complete model is the Generalized Affine
Realized Volatility (GARV) model proposed by
Christoffersen et al. (2014). The model decomposes
the variance into two parts: the variance calculated
via the daily return hRt and the variance calculated
through the realized variance hRVt :

rtþ1 ¼ r þ λ� 1
2

� �
�htþ1 þ

ffiffiffiffiffiffiffiffi
�htþ1

q
ztþ1
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hRtþ1 ¼ ωþ βhRt þ τ1 zt � τ2

ffiffiffiffi
�ht

q� �2

hRVtþ1 ¼ � þ ϕhRVt þ d1 �t � d2

ffiffiffiffi
�ht

q� �2

RVt ¼ hRVt þ α2 �2t � 1� 2d2�t

ffiffiffiffi
�ht

q� �
�htþ1 ¼ κhRtþ1 þ ð1� κÞhRVtþ1

where ðzt; �tÞ follows a standard bivariate normal
distribution with the correlation of ρ. The risk-
neutral dynamics under the exponential affine sto-
chastic discount factor are:

rtþ1 ¼ r � 1
2
�htþ1 þ

ffiffiffiffiffiffiffiffi
�htþ1

q
z�tþ1

hRtþ1 ¼ ω1 þ β1h
R
t þ τ1 zt � τ�2

ffiffiffiffi
�ht

q� �2

hRVtþ1 ¼ � þ ϕhRVt þ d1 ��t � d�2

ffiffiffiffi
�ht

q� �2

RVt ¼ hRVt þ α2 ��2t � 1� 2d�2�
�
t

ffiffiffiffi
�ht

q� �
�htþ1 ¼ κhRtþ1 þ ð1� κÞhRVtþ1

where ðz�t ; ��t Þ also follows a standard bivariate
normal distribution with the correlation of ρ.
τ�2 ¼ τ2 þ λ, and d�2 ¼ d2 þ χ. As in the Realized
GARCH model, the parameter χ is associated with
the variance risk premium, which is introduced
into the model via the discount factor. We report
γ ¼ d1=α2 instead of α2 because the former can be
used to measure the contribution of the realized
information to the volatility process. Due to the
affine structure of the GARV model, a closed-
form solution for it is provided by Christoffersen
et al. (2014).

LHARG
In addition to GARCH-type models, the availabil-
ity of high-frequency data and realized measures
has boosted the development of reduced-form
models such as the HAR model (Corsi 2009). In
particular, the HAR model was adapted by using
the leverage function of the Heston-Nandi GARCH
as well as a gamma distribution (LHARG) in order
to price European call options. Majewski, Bormetti,

and Corsi (2015) provided a general framework for
option pricing with an LHARG model. In this
study, we follow the indications of Huang, Tong,
and Wang (2019) and use an extended LHARG by
adding quarterly and yearly data to more ade-
quately model the long-memory feature of volati-
lity. The dynamics for the physical measures are:

rtþ1 ¼ r þ λRVtþ1 � 1
2
RVtþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
RVtþ1

p
ztþ1

RVtþ1jF t,Γðδ;ΘðRVt; LtÞ; θÞ

ΘðRVt; ,tÞ ¼ d þ βdRV
ðdÞ
t þ βwRV

ðwÞ
t þ βmRV

ðmÞ
t

þ βqRV
ðqÞ
t þ βyRV

ðyÞ
t þ αd,t

where ztþ1 follows i.i.d. standard normal distribu-
tion. We define the components as follows:

RVðdÞ
t ¼ RVt

RVðwÞ
t ¼

X4
i¼1

RVt�i

 !
=4

RVðmÞ
t ¼

X21
i¼5

RVt�i

 !
=17

RVðqÞ
t ¼

X62
i¼22

RVt�i

 !
=41

RVðyÞ
t ¼

X251
i¼63

RVt�i

 !
=189

lt ¼ z2t � 1� 2γzt
ffiffiffiffiffiffiffiffi
RVt

p

Here, lt represents the leverage term which
describes the asymmetric reaction of the volatility
in response to positive and negative shocks from
returns. Following Huang, Tong, andWang (2019),
we only include the daily leverage as a way of
keeping the model more concise. The risk-neutral
dynamics under the exponential-affine stochastic
discount factor are:

rtþ1 ¼ r þ λRVtþ1 � 1
2
RVtþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
RVtþ1

p
z�tþ1

RVtþ1jF t,Γðδ;Θ�ðRVt; ,
�
t Þ; θÞ
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ΘðRVt; ,
�
t Þ ¼ d� þ β�dRV

ðdÞ
t þ β�wRV

ðwÞ
t þ β�mRV

ðmÞ
t

þ β�qRV
ðqÞ
t þ β�yRV

ðyÞ
t þ α�d,

�
t

The starred risk-neutral parameters are linked to
the physical parameters as follows:

β�d ¼ Δ½βd þ αdð2γλþ λ2Þ� α�d ¼ Δαd
d� ¼ Δd θ� ¼ Δθ; γ� ¼ γþ λ

β�j ¼ Δβj for j 2 fw;m; q; yg
,ðdÞt ¼ ��2t � 1� 2γ���t

ffiffiffiffiffiffiffiffi
RVt

p

where Δ ¼ f1þ θ½ðλ� 1=2Þ2=2� χ � 1=8�g�1=2.
Once again, the parameter χ is associated with the
variance risk premium. Majewski, Bormetti, and
Corsi (2015) provide the option-pricing formula
for arbitrary lags, which can be easily adapted to
our setting.

IV. Estimation method

We estimate a model with a joint likelihood for the
observed time series and the pricing errors, where
the latter are weighted by the Vega9 Unlike the
traditional calibration method focusing only on
pricing errors, this approach also takes the model’s
ability to replicate underlying dynamics into
account and received increasing attention in pri-
cing of financial derivatives (Christoffersen et al.
2014; Huang, Wang, and Hansen 2017; Wang et al.
2017b).

Log-likelihood for the underlying process

The log-likelihood for the underlying process mea-
sures a model’s ability to describe the physical
dynamics of the returns and realized measures (if
applicable). We have outlined this log-likelihood
for each model of interest:

● GARCH models

lR ¼ �T=2 logð2πÞ � 1=2
X
t

logðhtÞ

� 1=2
X
t

ðrt � r � λ
ffiffiffiffi
ht

p
þ 0:5htÞ2=ht

● Heston-Nandi GARCH models

lR ¼ �T=2 logð2πÞ � 1=2
X
t

logðhtÞ

� 1=2
X
t

ðrt � r � ðλ� 0:5ÞhtÞ2=ht

● Realized GARCH model

lR ¼ �T=2 logð2πÞ � 1=2
X
t

logðhtÞ

� 1=2
X
t

ðrt � r � ðλ� 0:5ÞhtÞ2=ht

lRV ¼ �T=2 logð2πσ2Þ
� 1=2

X
t

ðlog xt � � � ϕ log ht � d1zt � d2ðz2t � 1ÞÞ2=σ2

● GARV model

As the exact likelihood function for the volatility
shock in the GARV model is difficult to obtain, the
QMLE method is applied by assuming a bivariate
normal distribution for (zt,ut) thus resulting in:

μt ¼
μRt
μRVt

" #
¼ r þ ðλ� 1

2Þ�ht
hRVt

" #
;

�t ¼
�ht �2ρd2α2�ht

�2ρd2α2�ht 2α22ð1þ 2d22
�htÞ

" #

Let xt ¼ ðrt; xtÞT :

,R;RV ¼ �T logð2πÞ � 1
2

X
t

logðj�tjÞ

�
X
t

ðxt � μtÞT��1
t ðx� μtÞ

2

● LHARG model

,R ¼ �T
2
logð2πÞ � 1

2

X
t

logðRVtÞ

� 1
2

X
t

ðrt � r � ðλ� 1
2
ÞRVtÞ

2

=RVt

( )

9According to Vega’s definition, this pricing error is an approximation of the error in the implied volatility..
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,RV ¼ �
X
t

RVt

θ
þ ΘðRVt�1; Lt�1Þ

� �

þ
X
t

log
X1
k¼0

RVδþk�1
t

θδþkΓðδ þ kÞ
ΘðRVt�1; Lt�1Þk

k!

 !

In practice, we calculate the infinite sum up to 90
lags following the suggestion of Majewski,
Bormetti, and Corsi (2015).

Log-likelihood for the pricing error

In this study, the option-pricing error of estimation
is defined as the Vega-weighted pricing error, to
mimic the difference in the implied volatility:

ei ¼ ðOMod
i � OMkt

i Þ=Vegai
where OMod

i and OMkt
i are the model and market

option price for the option i, respectively, assuming
that the weighted pricing error follows the normal
distribution of Nð0; σ2eÞ with the corresponding
log-likelihood function:

lo ¼ �N=2 logð2πσ2eÞ � 1=2
X
i

e2i =σ
2
e

Since all 50 ETF options are European options, the
implied volatility can be easily calculated by invert-
ing the Black-Scholes formula with the correspond-
ing option prices10 In particular, OMkt

i is calculated
using the mid-quote and OMod

i is calculated using
the model price of the option i. The Vegai is calcu-
lated using the implied volatility derived from
the OMkt

i .

Joint log-likelihood

The joint log-likelihood is constructed by adding
the log-likelihood of the underlying and of the
pricing errors together:

l ¼ lR;RV þ lo

where lR;RV ¼ lR þ lRV for the RGARCH and the
LHARG models, while lR;RV ¼ lR for the models
without realized measures.

V. Empirical results

The dataset

Our dataset contains data from 2015/02–2018/02;
the following trimming process is applied:

(1) Options which do not satisfy the arbitrage
restriction are dropped. As the option price
is adjusted when the dividend is paid (i.e.
dividend-protected), the SSE 50 ETF options
can be treated as European options without
dividends. The arbitrage restrictions are set as:

CðtÞ � maxð0; SðtÞ � Ke�rTÞ PðtÞ �
maxð0;Ke�rT � SðtÞÞ

(2) Options with zero trading volume are
dropped.

(3) Options with maturities shorter than five or
longer than 90 days are dropped. The result-
ing sub-sample represents up to 86% of the
total trading volume.

(4) Options with low liquidity are dropped. This
means that for every maturity on a given day,
we drop those options with the trading
volumes lower than the median volume of the
group.

The resulting dataset contains 12,281 option prices.
Table 2 provides an overview of the dataset with the
number of prices and the average implied volatility.
Panel A reports that, unlike the U.S. market, the
Chinese market has a relatively balanced volatility
smile rather than a volatility smirk. This balance indi-
cates a relatively weaker leverage effect on the model.
Panel B shows the volatility term structure which is
downward sloping. In addition,most of thematurities
are 60 days or less11, indicating a lower demand for
long-memory structures in the pricing model.

It is worth noting that the first year of trading
experienced significant fluctuations and
a particularly tight short-sell constraint due to the
stock market bubble in mid-2015, the restarting of
the IPOs in late 2015, and the 1 week of an implement
of market circuit-breaker in the early 2016. Therefore,

10Although the implied volatility is unique given the option characteristics, it does not have a closed-form solution and it requires numerical method in order to
retrieve it. In practice, we used the Dekker–Brent method (Press et al. 2002) to calculate implied volatility with the help of Matlab built-in function (blsimpv)..

11In our untrimmed dataset, options with maturities of less than 90 days account for 92% of the total trading volume.

1874 Z. HUANG ET AL.



we conduct our empirical investigation with both the
full sample and the post-2015 sub-sample.We also use
options from all trading days instead of only
Wednesday due to the relatively limited strike prices
available for the options.

Estimated parameters

Table 3 provides the parameter estimations for the
different models using the full sample from 2015/02
to 2018/02. The first eight models are GARCH-type
models and share the same notations, if applicable.
The last one is the LHARGmodel and has a different
set of parameters which we indicate accordingly.

Several commonly discussed features can be
observed. First, all of the models have a highly per-
sistent volatility process under both physical and
risk-neutral measures. Second, most of the models
have a positive and significant equity premium para-
meter (λ). The models with explicit volatility risk
premium parameters (χ) indicate a higher risk-
neutral volatility than their physical counterparts.

However, we also find an unconventionally posi-
tive leverage effect for most models (i.e. given the
same magnitude of shocks, a positive shock induces
higher volatility in the next period). This is likely to
be explained by the market boom in early 2015
when the return and the volatility were highly
positively correlated. If we estimate parameters

without the data from 2015, only weak correlations
are found in the GARCH models. Generally, the
conventional leverage effect has been found to be
weak in the Chinese market.

In-sample pricing performance

Table 4 provides the in-sample pricing perfor-
mance across different models. The performance
is evaluated by the mean-squared error of implied
volatility (IVRMSE) defined as:

IVRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðIVMkt
i � IVMod

i Þ2=N
vuut � 100

where IVMod
i and IVMkt

i are the implied volatilities
calculated from the model price and the market
price, respectively. Unlike the option price-based
RMSE, the IVRMSE is a standardized pricing error;
this means that it avoids the great weight assigned
to high-price options. Table 4 provides a summary
of the pricing performance with decomposed
details. Bold numbers indicate the minimum
IVRMSE for each row.

For the overall performance, the total IVRMSE
shows that models with realized measures generally
perform better than those without realized mea-
sures. The GARV model delivers the best fit (with
a 21% IVRMSE reduction compared to the HNG),

Table 2. Option dataset summary.
2015/02-2016/01 2016/02-2018/02 2015/02-2018/02

Total 3520 8761 12,281
(0.366) (0.162) (0.221)

Panel A: Partitioned by moneyness
S/K< 0.95 839 818 1657

(0.405) (0.203) (0.305)
0.95< S/K< 1.05 2041 7162 9203

(0.343) (0.151) (0.194)
1.05< S/K 640 781 1421

(0.390) (0.219) (0.296)

Panel B: Partitioned by maturity
DTM< 30 1672 3326 4998

(0.374) (0.159) (0.231)
30<DTM< 60 1507 3688 5195

(0.360) (0.164) (0.221)
60<DTM 341 1747 2088

(0.357) (0.164) (0.196)

Panel C: Partitioned by VIX level
VIX< 15 3620 3620

(0.121) (0.121)
15< VIX< 30 503 4473 4976

(0.259) (0.173) (0.182)
30< VIX 3017 668 3685

(0.384) (0.308) (0.370)

Note: The number of options in each category is provided. The average implied volatility is reported in parentheses.
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followed by the LHARG and RGARCH models.
The non-affine GARCH models (GARCH/GJR/
NG/EG) are generally better than the affine
GARCHmodels (HNG/HNGvd). A similar pattern
is documented by Christoffersen, Jacobs, and
Ornthanalai (2013b). As the leverage effects are
weak, there is no significant performance

difference between symmetric (GARCH) and
asymmetric models (GJR/NG).

For the decomposed performance, we isolate the
2015 sub-sample from the dataset and price it using
the parameters estimated from the full sample. The
results clearly demonstrate that, in the first year of the
SSE 50ETF options, the behaviour was significantly

Table 4. Full sample pricing performance: 2015/02-2018/02.
BS GARCH GJR NG EG HNG HNGvd LHARG GARV RGARCH

Total IVRMSE 12.2482 6.3602 6.2441 6.3489 5.8701 6.5301 6.5306 5.6821 5.1600 5.5718

Panel A: Partitioned by time period
2015/02-2016/01 18.4495 10.3053 9.9942 10.2898 9.3670 10.9770 10.9758 9.2509 8.3374 8.7830
2016/02-2018/02 8.5751 3.7338 3.7949 3.7197 3.6002 3.3862 3.3896 3.2815 3.0657 3.5338

Panel B: Evaluation by moneyness
S/K< 0.95 16.6198 8.1000 7.7831 8.0653 7.3916 9.4044 9.4021 7.4116 6.7632 7.0091
0.95< S/K< 1.05 10.9419 5.7206 5.6223 5.6690 5.3168 5.7390 5.7392 5.1939 4.7354 5.0488
1.05< S/K 14.1084 7.9536 7.9874 8.2021 7.2333 7.4112 7.4166 6.3990 5.6849 6.8420

Panel C: Evaluation by maturity
DTM< 30 13.5382 6.8011 6.6268 6.7727 6.4178 7.4022 7.4017 6.0932 5.5587 5.9368
30<DTM< 60 11.8430 6.3989 6.2846 6.3709 5.7881 6.2062 6.2082 5.7734 5.2115 5.6348
60<DTM 9.7303 5.0033 5.0684 5.0951 4.5440 4.8767 4.8759 4.2307 3.8886 4.3753

Panel D: Evaluation by VIX level
VIX< 15 10.3012 2.8344 2.7746 2.7710 2.8078 2.8551 2.8558 2.4064 2.2971 2.7943
15< VIX< 30 6.3190 3.7128 3.7503 3.6475 3.5808 3.6011 3.6087 3.2686 3.1925 3.4713
30< VIX 18.4879 10.3817 10.1403 10.4008 9.4530 10.8107 10.8084 9.3333 8.3533 8.9051

Note: The bold numbers indicate the minimum IVRMSE values in each row.

Table 3. Full sample parameter estimation: 2015/02-2018/02.
GARCH GJR NG EG HNG HNGvd GARV RGARCH LHARG

λ −0.0353 0.2723 0.2057 0.0849 1.0950 1.1356 20.4439 0.0574 λ 6.6784
(0.0361) (0.0519) (0.0299) (0.0005) (0.4612) (0.8032) (1.7763) (0.0762) (3.5198)

β 0.9080 0.9011 0.9161 0.9874 0.9867 0.9867 0.9818 0.9954
(0.0027) (0.0105) (0.0114) (0.0001) (0.0010) (0.0020) (0.0011) (0.0010)

τ1 0.0781 0.1299 0.0702 0.0354 7.91E-06 6.95E-06 2.07E-06 −0.0220 θ 8.20E-05
(0.0027) (0.0137) (0.0113) (0.0012) (2.51E-07) (5.12E-07) (1.93E-07) (0.0045) (8.51E-06)

τ2 −0.0708 −0.3372 0.1754 −23.8340 −25.4704 −61.4457 0.0460 δ 1.4055
(0.0064) (0.0442) (0.0063) (3.9761) (4.1017) (2.6017) (0.0092) (0.0879)

γ 0.3767 0.1085 θβd 0.4928
(0.0234) (0.0217) (0.0547)

κ 0.2105 θβw 0.2648
(0.0244) (0.0302)

� 2.2893 θβm 0.0719
(0.2441) (0.0068)

ϕ 2.89E-06 1.3024 θβq 0.0494
(2.70E-06) (0.0291) (0.0042)

d1 8.14E-06 0.0032 θβy 0.0580
(2.22E-06) (0.0092) (0.0031)

d2 371.1036 0.1924 α 2.35E-05
(50.7164) (0.0512) (4.59E-06)

ρ=σ 0.0451 0.5817 γ 23.4299
(0.0449) (0.0483) (7.3757)

χ 1.0670 9.1939 0.0379 χ 356.6782
(0.0537) (1.8250) (0.1472) (559.7493)

log(~h) −8.5487 −7.4071 −7.7362 −7.7456 −7.5059 −7.5695 −7.8923 −8.2587 log(~h) −8.5758
(0.0216) (0.1134) (0.0758) (0.0210) (0.0593) (0.0639) (0.0839) (0.5922) (0.5952)

πP 0.9861 0.9956 0.9943 0.9874 0.9912 0.9912 0.9835 0.9954 πP 0.9369
πQ 0.9862 0.9870 0.9875 0.9874 0.9908 0.9908 0.9826 0.9954 πQ 0.9999
, 18,800.2 19,034.1 18,820.5 19,830.6 18,655.6 18,656.4 26,618.3 19,887.4 , 269,104

Note: Here we report θβi and θαi instead of βi and αi for the LHARG model to make it easier to compare different models. The robust standard errors are
reported in parentheses. The variables πP and πQ are persistence parameters under physical and risk-neutral measures, respectively. The variable , is the log-
likelihood value. The row “ρ=σ“ reports parameter ρ for the GARV model and σ for the RGARCH model.
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different than in the following years; the full sample
parameters show extremely large IVRMSEs for the
first year, which then drop sharply when the data for
first-year are eliminated. The GARV model remains
the best model for all of the sub-cases. Moreover, the
log-linear models perform better when the volatility
level is high and the option is deep out-of-the-money.

As the last three models rely on realized
measures, we also provide performance com-
parisons for a range of realized measures.
Table 5 reports the IVRMSE for the three
models using different realized measures as
well as the realized variance for different sam-
pling frequencies12 of Andersen and Bollerslev
(1998), the two-scale realized variance (TSRV)
of Zhang, Mykland, and At-Sahalia (2005), the
realized kernel (RK) of Barndorff-Nielsen et al.
(2008), and the bi-power variation (BPV) of
Barndorff-Nielsen (2004). The bold numbers
indicate the minimum IVRMSE for each col-
umn. Interestingly, unlike the results based on
volatility forecasting, the complex realized
measures do not generally provide better
option prices. Traditional-realized variance
with sampling intervals as short as 10 min
leads to a reasonably good performance.

We also provide Black-Scholes (BS) results with the
volatility being calibrated from the full sample. Given
the dramatic changes in volatility levels between 2015
and 2018, it is not surprising that the BS model
delivers the worst pricing performance.

Out-of-sample pricing performance

To incorporate the realized measures, the number
of parameters is significantly increased for the
LHARG, GARV and RGARCH models. It is impor-
tant to check that the superior performance of these
models is not merely due to in-sample overfitting.
In the literature, three major out-of-sample evalua-
tion procedures have been proposed. The first one
estimates the parameters using data from the first
several years and then use them to value option
prices for the following years (e.g. Christoffersen
and Jacobs 2004). The second one uses a rolling-
window framework in which the parameters are
updated once in each time period (e.g.
Christoffersen and Diebold 2006). The third one
splits the sample into Wednesday (for parameter
estimation) and Thursday (for pricing evaluation)
sub-samples within the same time period (e.g.
Christoffersen, Jacobs, and Minouni 2010). As the
Chinese data cover a much shorter period and are
more volatile than the U.S. data, we use the rolling-
window framework as our primary method and the
split sample method as a robustness check13

The evaluation of the out-of-sample pricing perfor-
mance is based on a rolling window of 252 trading
days, with the parameters updated on amonthly basis.
We evaluate the out-of-sample pricing errors from
2016/02 to 2018/02; the observations from 2015/02
to 2016/01 are used as a pre-sample to determine the
first parameter for the out-of-sample analysis. The
results are presented in Table 6 and include the
decomposed results related to different moneyness,
maturity and VIX level.

Similar to the in-sample results, the models with
realized measures have better out-of-sample pricing
performance. The GARV model still generates the
smallest total pricing error, but the decomposed
results are mixed for the three models. The perfor-
mance gain of the leverage GARCHmodels over the
standard GARCH model is not significantly larger.
The HNGvd model delivers results similar to the
standard HNG model. In short, the results of the
rolling-window method for examining the out-of-
sample data suggest that the performance gain of

Table 5. Pricing performance using different realized measures.
LHARG GARV RGARCH

RV1min 5.8020 5.0863 5.6310
RV5min 5.7282 5.1600 5.5718
RV10min 5.9253 5.2245 5.5281
RV30min 5.9372 5.3567 5.5434
RK 5.9089 5.2841 5.6233
BV 5.8281 5.1562 5.5694
TSRV 5.9553 5.2847 5.6172

Note: This table reports the full sample pricing performances (IVRMSE) of
three high-frequency data-based option pricing models (GARV/LHARG/
RGARCH) using different realized measures. We consider a variety of
classes of estimators for the asset price volatility, including the realized
variance (RV1min, RV5min, RV10min and RV30min) from AB1998, the two-
scale realized variance (TSRV) from zhang2005tale, the realized kernel (RK)
from BHLS2008, and the bi-power variation (BPV) from BN2004. The bold
numbers indicate the minimum IVRMSE values in each column.

12RV1min, RV5min, RV10min and RV30min are considered.
13Given the much smaller sample we have, the splitting method in this study estimates parameters using Monday/Wednesday/Friday data and evaluates option
prices using Tuesday/Thursday data. We use MWF/TTh to denote this method..
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option-pricing models that are based on realized
measures is not due to in-sample overfitting.

For the split sample method, we estimate the
parameters using Monday/Wednesday/Friday
data from 2016/02 to 2018/02 period and value
the Tuesday/Thursday options within the same
time span14 The results are presented in Table 7.
Most of the results are the same as when the roll-
ing-window method is used.

VI. Conclusion

The existing literature on volatility models for the
Chinese stock market typically focuses on the fit
and forecast of the volatility series itself. This study,
on the other hand, provides a comparison of dis-
crete-time volatility models through the pricing of

SSE 50 ETF options. The models discussed in this
article including both affine and non-affine models,
as well as state-of-the-art models with newly devel-
oped realized measures. Since volatility takes
a central position in the pricing of options, our
results contribute both to the literature on volatility
comparisons and that on option pricing. That may
therefore be relevant to both academics and
practitioners.

In linewith the current literature, we found that the
non-affine structure is superior to affinemodels when
it comes to modelling the volatility surface. We also
found that models based on realized measures have
a significantly greater pricing-performance gain when
compared to models based on daily returns across
measures such as the volatility surface and across
different volatility regimes. Out-of-sample

Table 6. Out-of-sample (rolling-window) pricing performance: 2016/02–2018/02.
BS GARCH GJR NG EG HNG HNGvd LHARG GARV RGARCH

Total IVRMSE 9.0341 4.1551 3.9833 3.9705 3.7481 3.9247 3.8531 3.3378 3.2324 3.3341

Panel A: Evaluation by moneyness
S/K< 0.95 9.6641 4.1501 3.9875 3.7276 4.1867 4.2714 3.9163 3.1152 3.2558 3.1925
0.95< S/K< 1.05 9.0475 4.0609 3.8939 3.8966 3.6008 3.8526 3.8267 3.2987 3.2180 3.3191
1.05< S/K 8.1892 5.0109 4.7927 4.8772 4.6104 4.2265 4.0376 3.9610 3.3449 3.6215

Panel B: Evaluation by maturity
DTM< 30 9.3175 3.9309 3.8122 3.8930 3.6241 3.9890 3.9886 3.1089 3.2063 3.4035
30<DTM< 60 9.3756 4.4317 4.2598 4.2098 3.9133 4.1514 4.0625 3.4520 3.3850 3.4985
60<DTM 7.6447 3.9566 3.6792 3.5689 3.6183 3.2519 3.0531 3.5131 2.9351 2.8008

Panel C: Evaluation by VIX level
VIX< 15 5.8761 2.4747 2.4760 2.5273 2.5463 2.4859 2.4851 2.2456 2.2443 2.3770
15< VIX< 30 7.4012 4.7196 4.4049 4.3748 3.7650 4.2332 4.0983 3.4616 3.3632 3.2405
30< VIX 12.8435 6.6072 6.6846 6.6018 7.3254 6.9726 6.9760 6.1652 5.8145 6.6765

Note: The out-of-sample pricing performance evaluation is based on a rolling window of 252 trading days, with the parameters updated on a monthly basis. We
evaluate the out-of-sample pricing errors using observations from the 2016/02 to 2018/02 period and use observations from the2015/02 to 2016/01 period as
a pre-sample to obtain the first parameter for the out-of-sample analysis. The bold numbers represent the minimum IVRMSE value in each row. BS stands for
the classic Black-Scholes model where volatility is estimated by minimizing the mean squared Vega for the weighted pricing error.

Table 7. Out-of-sample pricing performance (MWF/TTh): 2016/02-2018/02.
BS GARCH GJR NG EG HNG HNGvd LHARG GARV RGARCH

Total IVRMSE 6.1244 3.0666 3.0691 3.0747 3.0794 3.1600 3.1526 2.7796 2.7805 2.8846

Panel A: Partitioned by moneyness
S/K< 0.95 7.3434 2.7994 3.3350 2.7942 3.0241 3.9588 3.9483 2.5132 3.0451 3.0243
0.95< S/K< 1.05 5.4585 2.8200 2.8669 2.8280 2.8371 2.9539 2.9489 2.6092 2.6207 2.7582
1.05< S/K 9.5211 5.2529 4.4278 5.3003 5.0030 4.0116 3.9996 4.3444 3.8257 3.8380

Panel B: Partitioned by maturity
DTM< 30 5.9490 2.8301 2.8968 2.8324 2.9331 3.1090 3.0971 2.7019 2.8732 2.8812
30<DTM< 60 6.5814 3.2018 3.1411 3.2015 3.1669 3.3095 3.2842 2.8546 2.8085 2.9243
60<DTM 5.4501 3.2461 3.2564 3.2838 3.1876 2.9360 2.9801 2.7777 2.5149 2.8063

Panel C: Partitioned by VIX level
VIX< 15 4.9164 2.2558 2.2723 2.2553 2.3446 2.4316 2.4243 1.9796 2.0578 2.2127
15< VIX< 30 4.3317 3.0044 3.0451 3.0062 2.9891 3.0626 3.0532 2.6264 2.5910 2.7669
30< VIX 15.2485 5.8826 5.7432 5.9286 5.8402 5.9633 5.9568 5.7518 5.7211 5.5395

Note: This table reports the out-of-sample pricing performance (IVRMSE) for the 2016/02 to 2018/02 period. We estimate the parameters usingMonday/
Wednesday/Friday data from the 2016/02 to 2018/02 period. Keeping the parameters fixed, we value the Tuesday/Thursday options within the same time
period. The bold numbers indicate the minimum IVRMSE value in each row.

14The sample is trimmed to be comparable to the rolling-window results.
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comparisons confirmed that such gains are not simply
due to increasing parameters.

Most of the literature on pricing options with high-
frequency data has only focused on single-realized
measures; we add to this literature by checking the
pricing difference using a list of commonly-utilized
realized measures. Surprisingly, complicated-realized
measures do not provide better pricing results when
compared to simple-realized measures, such as the
conventional-realized variance. This is, however, not
the case for the forecast of volatility series itself, where
complicated measures such as realized kernel
(Barndorff-Nielsen et al. 2008), two-scale realized var-
iance (Zhang, Mykland, and At-Sahalia 2005) appear
to be empirically appealing.

Another interesting result is that the well-
documented leverage effect embedded in the option
price is weak for the Chinese option market, which
contradicts its previously documented effect for the
U.S. market. Our analysis also indicated significant
differences between the first trading year (i.e. 2015)
and subsequent trading years. These differences are
possibly due to the extreme market volatility and
severe limits imposed on arbitrage. This seems to
have been overlooked, as most existing research on
the Chinese option market is either based on 2015
only (e.g. Li et al. 2018) or is based on a mixed dataset
(e.g. Yang 2018). It is therefore necessary to analyse
the data from this year separately when investigating
the Chinese option market.

Future studies should address several issues. The
first is the modelling of jumps in the underlying
process. Christoffersen, Jacobs, and Ornthanalai
(2012) highlighted the importance of dynamic jump
intensities in option pricing. It is natural to expect that
such a feature might also be important in the Chinese
market, especially when realized jumps are involved.
The second issue is the need for comparisons between
discrete-time models and continuous-time models,
especially with regard to continuous-time models
with realized measures.
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