Making Sense of Discounting

Thomas Sterner

Policy Instrument Course
March 2014
(joint work with C Azar, M Hoel and M Persson, and OJS
And Arrow et al....)

First time I remember thinking about discounting

First time I remember thinking about discounting

Nuclear waste twice as expensive!

Comparing Nuke Wind

- Costs:
- Plant x
- Fuel y
- Labour z
- Waste w

Comparing Nuke Wind

- Costs:
- Plant x
- Fuel y
- Labour z
- Waste 2w

First time I remember thinking about discounting

Nuclear waste twice as expensive!

Never mind, build it 2060 instead of 2050!

Comparing Nuke Wind

- Costs:
- Plant x
- Fuel y
- Labour z
- Waste 2w

Comparing Nuke Wind

- Costs:
- Plant x
- Fuel y
- Labour z
- Waste w

Lend me a piece of paper

- Fold it 40 times

To the moon!

$$
\begin{aligned}
& 2^{10}=1000 \\
& 2^{40}=10^{12} \\
& 10^{8} \text { metres }
\end{aligned}
$$

Stern Review

- Climate Change the biggest externality in human history.
- 5-20\% of future GDP
- Enormous uncertainties in calculation:
- Feedback from cloudformation
- Feedback from methan release
- Feedback from ice-melting (Albedo)
- Guess which is biggest?

Stern Review

- Climate Change the biggest externality in human history.
- 5-20\% of future GDP
- Enormous uncertainties in calculation:
- Feedback from cloudformation
- Feedback from methan release
- Feedback from ice-melting (Albedo)
- DISCOUNT RATE!

Conventional Discounting

- If some cost or benefit component at a future date t is of the magnitude V_{t} and the discount rate is r, the present value is

$$
(1+r)^{-t} V_{t}
$$

The effect is big

- If climate change causes a cost of 1 billion in 400 years time this is valued at 3 dollars today (5\%). Had it been the same cost in 500 years then the cost would be 2 cents.
- With 6% it would have been .02 cents instead. The difference between 5 and 6 percent is thus a factor 100 !

PROBLEM ?!

- $1 \$$ in bank today $=2 \$$ in 6 years
- so $\$ 2$ cost in 6 years $\sim=\sim$ cost of $\$ 1$ today
- How big in 24 years?
- Or 240 years ie 40 doubblings - like paper

24

Exponential Growth 24 years

60

Exponential growth 60 years

240

Exponential growth 240 years

Many Issues

- Can growth continue forever?
- Psychological aspects
- Hyperbolic and Gamma Discounting
- Risk
- RELATIVE PRICES

Correct value of future project

- $V_{t}=V_{0}(1+r)^{-t}(1+p)^{t}$
- The effect of relative prices can be as big as discounting!
- If p is big enough?

Example Land

- Property in London 19\%; Scotland 11\%
- Flooding of London will be costly

Labour

- 100 years ago 10% of the population in New York had a maid.
- Incomes are growing 5\%/year

Labour

- 100 years ago 10\% of the population in N York had a maid.
- Incomes are growing 5\%/year
- How many people have a maid today?

Why can't we all have maids?

Why can't we all have maids?

- $P_{\text {maid }}=f($ Income $)$

FOOD

- World Agriculture is 24% GDP
- Lets assume we loose 1% of World Agriculture. How big is loss?
- Roughly $0.01^{*} 0.24==0.24 \%$ GDP

FOOD

- World Agriculture is 24% GDP
- Now assume we loose 95\% of World Agriculture. How big is loss?
- Roughly $0.95^{*} 0.24=23$ \% GDP

FOOD

- World Agriculture is 24% GDP
- Now assume we loose 95% of World Agriculture. How big is loss?
- Roughly 0.95*0.24 = 23 \% GDP
- 23% ! Doesnt seem right does it
- But what is wrong?

Relative Prices of food...

Relative Prices of food...

- will change so fast
- That the 5% left which today accounts for 1% of GDP will become ALL of GDP.

Future Ecosystem Scarcities

- Water
- Soil
- Wild (non-cultivated) fish
- Biodiversity
- Glaciers and snow
- Wildlife, protected areas
- Fuelwood, pasture, silence (?)

OK: Economics

- Why do we discount?

OK: Economics

- Why do we discount?
- We will be richer
- We are impatient
- Rich people dont know the value of money

Assume an intertemporal welfare function

$$
W=\int_{0}^{T} e^{-\rho t} U(C(t)) d t
$$

The tradeoffs between consumption at different points of time are given partly by the "utility discount rate" ρ partly by the utility function U.

The appropriate discount rate is the sum of these two reasons

$$
r=\rho-\frac{\frac{d}{d t} U^{\prime}(C(t))}{U^{\prime}(C(t))}
$$

With Constant elasticity of utility function \rightarrow classical Ramsey Rule

$$
\begin{aligned}
& U(C)=\frac{1}{1-\alpha} C^{1-\alpha} \\
& r(t)=\rho+\alpha g_{C}(t)
\end{aligned}
$$

Ramsey and growth

- If $\rho=0.01, \alpha=1.5$ and $g=2.5 \% r=4.75 \%$.
- Constant over time iff growth is constant.
- Increases with growth
- If growth falls, future discount rates will fall over time. Azar \& Sterner (1996): limits to growth \rightarrow falling discount rates and higher damage from carbon emissions.

Compare Nordhaus 5 \$/ton

The marginal cost of CO_{2} emissions

Fig. 3. The generalized cost of a unit emission of CO_{2} is plotted as a function of γ in four cases. In plot A, B and C , the inequality situation is worsened, unchanged, and improved, respectively. In plot D , income distribution is not considered. The higher the value for γ, the higher is the discount rate, but also the inequality aversion.

Are there Limits to Growth?

- Clearly YES:
- A finite planet
- The amount of cement, carbon, steel and water that we can use is limited!

Are there Limits to Growth?

- Clearly YES:
- A finite planet
- The amount of cement, carbon, steel and water that we can use is limited!
- Clearly NO:
- Human imagination is limitless
- The quality of concerts and computer games knows no bounds!

Our best image of the future

- Continued growth...
- Rich get even richer.
- Poor will eventually also get richer but gap not eliminated.
- Much of growth in manufactured goods that use little resources. More mobiles, culture, computation, communication...
- Less transport, corals, clean water?

We need two sectors:

 C which grows; E (which does not)$$
W=\int_{0}^{\infty} e^{-\rho t} U(C, E) d t
$$

The appropriate discount rate r is then

$$
r=\rho+\frac{-\frac{d}{d t} U_{C}(C, E)}{U_{C}(C, E)}
$$

Relative price of "environment"

Value of environmental good is given by

$$
U_{E} / U_{C}
$$

The relative change in this price, p, is

$$
p=\frac{\frac{d}{d t}\left(\frac{U_{E}}{U_{C}}\right)}{\left(\frac{U_{E}}{U_{C}}\right)}
$$

To simplify: select utility function that

 combines contant elasticity of utilityabove with constant elasticity of substitution between E and C
$U(C, E)=\frac{1}{1-\alpha}\left[(1-\gamma) C^{1-\frac{1}{\sigma}}+\gamma E^{1-\frac{1}{\sigma}}\right]^{\frac{(1-\alpha) \sigma}{\sigma-1}}$

The relative price effect

Formula for discounting

- not only is there a relative price effect
- but the discounting formula itself changes

Discounting in 2 sector model

$$
r=\rho+\left[\left(1-\gamma^{*}\right) \alpha+\gamma^{*} \frac{1}{\sigma}\right] g_{C}+\left[\gamma *\left(\alpha-\frac{1}{\sigma}\right)\right] g_{E}
$$

Where γ^{*} is "utility share" of the environment

$$
\gamma^{*}=\frac{\gamma E^{1-\frac{1}{\sigma}}}{(1-\gamma) C^{1-\frac{1}{\sigma}}+\gamma E^{1-\frac{1}{\sigma}}}=\frac{U_{E} E}{U_{E} E+U_{C} C}=\frac{\frac{U_{E}}{U_{C}} E}{\left(\frac{U_{E}}{U_{C}} E\right)+C}
$$

Comparing discount formulas

$$
r=\rho+\left[\left(1-\gamma^{*}\right) \alpha+\gamma^{*} \frac{1}{\sigma}\right] g_{C}+\left[\gamma^{*}\left(\alpha-\frac{1}{\sigma}\right)\right] g_{E}
$$

$$
r(t)=\rho+\alpha g_{C}(t)
$$

Conclusions

- Relative prices CRUCIAL in long run CBA
- Complement discounting by price correction
- Discounting itself is complex in 2 sector model
- Important policy conclusions for Climate
- Next step: integrated GE Climate model

Introducing relative prices into

DICE

- Stern has been criticised for low r. $\delta=0,1$ $\eta=1$ and per capita $g=1,3$. Total 1.4
- Nordhaus reproduced Stern-type results with DICE and low r
- We reproduce Stern (or intermediate) results with Nordhaus values (high r)
- By including a small part of non-market sector and changing relative prices.

An even Sterner Review 2 Changes to DICE

Add non market damages \& Relative Prices

- The original model maximizes total discounted utility using a CRRA function
- $U(C)=C^{1-\alpha} /(1-\alpha)$
- To include the effect of changing relative prices we use a constant elasticity of substitution function of two goods:
- $U(C)=\left[(1-\gamma) C^{1-1 / \sigma}+\gamma E^{1-1 / \sigma}\right](1-\alpha) \sigma /(\sigma-1) /(1-\alpha)$

Environmental Damages

- First we assume a share of environmental services in current consumption of 10%.
- We assume damage to environmental amenities will be quadratic in temperature
- At $2,5{ }^{\circ} \mathrm{C}$ damage $\sim 2 \%$ current GDP
- $E(t)=E_{0} /\left[1+a T(t)^{2}\right]$
- So E is actually falling due to climate ch.
- We assume elasticity of Substitution is . 5

Figure 2: Optimal carbon dioxide emission paths in the DICE model for four different cases: the original model (Nordhaus discounting), the original model with high non-market impacts(High non-market impacts), the original model with low discount rate (Stern discounting) and a run where the changes in relative prices between market and non-market (environmental) goods is taken into account (Relative prices included). See text for explanation.

Comparison of discountrates

$$
g_{c}=2,5 \%, \text { rho }=1 \%, g_{E}=0 \%
$$

α	σ	Convent r	2sector \boldsymbol{R}		
0.5	0.5	2.25	3.35		
0.5	1	2.25	2.37		
0.5	1.5	2.25	2.28		
1	0.5	3.5	4.24		
1	1	3.5	3.50		
1	1.5	3.5	3.44		
1.5	0.5	4.75	5.12		
1.5	1	4.75	4.62		
1.5	1.5	4.75	4.60		

Comparison of discountrates

$$
g_{c}=2,5 \%, \text { rho }=1 \%, g_{E}=0 \%
$$

α	σ	Convent r	2sector \boldsymbol{R}	Price p	TOT R
0.5	0.5	2.25	$\mathbf{3 . 3 5}$	-5.00	-1.65
0.5	1	2.25	$\mathbf{2 . 3 7}$	-2.50	-0.12
0.5	1.5	2.25	$\mathbf{2 . 2 8}$	-1.67	0.61
1	0.5	3.5	4.24	-5.00	-0.76
1	1	3.5	3.50	-2.50	1.00
1	1.5	3.5	$\mathbf{3 . 4 4}$	-1.67	1.77
1.5	0.5	4.75	5.12	-5.00	0.12
1.5	1	4.75	$\mathbf{4 . 6 2}$	-2.50	2.13
1.5	1.5	4.75	$\mathbf{4 . 6 0}$	-1.67	2.94

- Arrow,K., M L. Cropper, C Gollier, B Groom, G M. Heal, R G. Newell, W D. Nordhaus, R S. Pindyck, W A. Pizer, P Portney, T Sterner, R Tol and M,L. Weitzman
"How Should Benefits and Costs Be Discounted in an Intergenerational Context? "

Effect of uncertainty $(1+r)^{t}$

eq P1
t 0.01
0.04
0.07 or 7
cert eq
$\begin{array}{lllll}1 & 990.10 & 961.54 & 934.58 & 962.34 \\ 3.91\end{array}$ $10905.29675 .56508 .35706 .82 \quad 3.53$
$\begin{array}{llllll}50 & 608.04 & 140.71 & 33.95 & 320.99 & 2.30\end{array}$
$\begin{array}{llllll}100 & 369.71 & 19.80 & 1.15 & 185.43 & 1.70\end{array}$
$\begin{array}{llllll}150 & 224.80 & 2.79 & 0.04 & 112.42 & 1.47\end{array}$
$\begin{array}{llllll}200 & 136.69 & 0.39 & 0.00 & 68.34 & 1.35\end{array}$
$\begin{array}{llllll}300 & 50.53 & 0.01 & 0.00 & 25.27 & 1.23\end{array}$
$\begin{array}{llllll}400 & 18.68 & 0.00 & 0.00 & 9.34 & 1.18\end{array}$

Present value of a cash flow of $\$ 1000$ RECEIVED AFTER T YEARS

 Value ($\$$) of $\$ 1000$ at a discount rate ofEqually likely
1% or 7\% expected value
$1 \% \quad 4 \% \quad 7 \%$

Certainty equivalent (\%)

961.22	3.94
700.71	3.13
318.36	1.28
184.40	1.02
111.58	1.01
67.67	1.01
24.89	1.01
9.16	1.01

resent value of a cash flow of $\$ 1000$ received after t years. Expected alue is the average of values from the 1% and 7% columns.

Newell \& Pizer (2003) - Freeman et al (2013)

- Groom et al. (2007) - Constant 4\% discounting

Estimated declining discount rate schedules. From $(11,16,17)$.

scountre	grun rate	Theoretical Approach	Reference
3.5\%	declining after 30 years	SRTP	$\begin{aligned} & \text { HM Treasury } \\ & (2003) \end{aligned}$
4\%	declining after 30 years	SRTP	Lebègue et al. (2005)
5\%		SRTP	a
3\%		federal refinancing rate	a
6\%		SRTP	a
4\%		SRTP	a
4\%			b
4\%		SRTP	SIKA(2002)
4\%		SRTP	Naturvårdsverket (2003)
3.5\%		government borrowing rate	a
7\%	Sensitivity check, $>0 \%$	SOC	OMB(2003)
2-3\%	Sensitivity check, $0.5-3 \%$	SRTP	EPA(2000)
8\%		SOC	b
7\%		SOC	b
8\%		SOC	b
8\%		SOC	b
8\%***	lower than 8\%	weighted average of SOC \& SRTP	NDRC (2006)
12\%		SOC	a
12\%		SOC	a
15\%		SOC	a
10-100/			Belli et al.

The recommended declining social discount rate in the UK

Recommended rates in France

END or more on rel income..

Now let us turn to behavioral economics

- Suppose we are motivated not just by
- WANTING MORE MONEY
- BUT
- WANTING MORE THAN THE NEIGHBOR

Utility and relative income

$$
U_{t}=u\left(c_{t}, R_{t}\right)=u\left(c_{t}, r\left(c_{t}, z_{t}\right)\right)=v\left(c_{t}, z_{t}\right)
$$

Compare $\mathrm{du} / \mathrm{dc}$ and dv/dc

3 Welfare Functions

$\operatorname{Max}: w^{p} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, z_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, z_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{s} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, c_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, c_{\tau}\right) e^{-\delta \tau} d \tau$ $\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{R} \equiv \int_{0}^{T} u\left(c_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$

3 Welfare Functions

$\operatorname{Max}: w^{p} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, z_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, z_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{s} \equiv \int_{0}^{T} u\left(c_{\tau}, r\left(c_{\tau}, c_{\tau}\right)\right) e^{-\delta \tau} d \tau=\int_{0}^{T} v\left(c_{\tau}, c_{\tau}\right) e^{-\delta \tau} d \tau$ $\left\{c_{0}, \ldots, c_{T}\right\}$
$\operatorname{Max}: w^{R} \equiv \int_{0}^{T} u\left(c_{\tau}\right) e^{-\delta \tau} d \tau$
$\left\{c_{0}, \ldots, c_{T}\right\}$

Comparing Private \& Social (in discrete T)

$$
\begin{aligned}
& \rho^{p}(t)=-\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}}{v_{10}} \\
& \rho^{s}(t)=-\frac{1}{t} \ln \frac{\partial w^{s} / \partial c_{t}}{\partial w^{s} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}+v_{2 t}}{v_{10}+v_{20}}
\end{aligned}
$$

$$
\text { SAME if } \quad v_{2 t}\left(c_{t}\right)=\beta v_{1 t}\left(c_{t}\right)
$$

PROPOSITION1 Arrow \& Dasgupta (2009)

Intuition Arrow Dasgupta

- Paper that is most akin to ours
- Rat Race: Working \& consume more to beat neighbours.
- But this does not necessarily happen because people will be positional in the future too
- Beat Jones's now \rightarrow Lose in future
- Condition for same optimal path of consumption is

$$
v_{2 t}\left(c_{t}\right)=\beta v_{1 t}\left(c_{t}\right)
$$

Defining degree of positionality

$U_{t}=u\left(c_{t}, R_{t}\right)=u\left(c_{t}, r\left(c_{t}, z_{t}\right)\right)=v\left(c_{t}, z_{t}\right)$

We find same results and more..

- Degree of positionality $\gamma_{t}=\frac{u_{2 t} r_{1 t}}{u_{1}+u_{2} r_{1}}$

$$
u_{1 t}+u_{2 t} r_{1 t}
$$

$$
\rho^{s}(t)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}-\frac{v_{1 t}}{v_{10}+v_{20}}\left(\gamma_{t}-\gamma_{0}\right)\right)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}\left\{\frac{1-\gamma_{t}}{1-\gamma_{0}}\right\}\right.
$$

We find same results and more..

- Degree of positionality

$$
\gamma_{t}=\frac{u_{2 t} r_{1 t}}{u_{1 t}+u_{2 t} r_{1 t}}
$$

$$
\rho^{s}(t)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}-\frac{v_{1 t}}{v_{10}+v_{20}}\left(\gamma_{t}-\gamma_{0}\right)\right)=\delta-\frac{1}{t} \ln \left(\frac{v_{1 t}}{v_{10}}\left\{\frac{1-\gamma_{t}}{1-\gamma_{0}}\right\}\right.
$$

- Assume pos growth g>0
- Assume increasing positionality (there is some evidence that $d y / d t>0$).
- Then PROPOSITION $2 \rho^{s}>\rho^{p}$

THREE relevant Discount rates

1. The Privately optimal (assuming z unchanged)
2. The Socially optimal (assuming R unchanged)
3. Ramsey Rule which decision makers use

(Private discount rate < Ramsey iff v12>0 - ie iff

 "Keeping up with the Joneses)
Comparing 3 discount rates

$$
\begin{aligned}
& \rho^{p}=-\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}}{v_{10}} \\
& \rho^{p}=-\frac{\partial\left(\partial w^{p} / \partial c\right) / \partial t}{\partial w^{p} / \partial c}=\delta-\frac{v_{11}}{v_{1}} c g-\frac{v_{12}}{v_{1}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g \\
& \rho^{s}=\delta-\frac{v_{11}+2 v_{12}+v_{22}}{v_{1}+v_{2}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g+\frac{d \gamma / d t}{1-\gamma_{t}} \\
& \rho^{R}=\delta-c v_{11} / v_{1} g=\delta+\sigma g
\end{aligned}
$$

Comparing 3 discount rates

$$
\begin{aligned}
& \rho^{p}=-\frac{1}{t} \ln \frac{\partial w^{p} / \partial c_{t}}{\partial w^{p} / \partial c_{0}}=\delta-\frac{1}{t} \ln \frac{v_{1 t}}{v_{10}} \\
& \rho^{p}=-\frac{\partial\left(\partial w^{p} / \partial c\right) / \partial t}{\partial w^{p} / \partial c}=\delta-\frac{v_{11}}{v_{1}} c g-\frac{v_{12}}{v_{1}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g \\
& \rho^{s}=\delta-\frac{v_{11}+2 v_{12}+v_{22}}{v_{1}+v_{2}} c g=\delta+\sigma g-\frac{v_{12}}{v_{1}} c g+\frac{d \gamma / d t}{1-\gamma_{t}} \\
& \rho^{R}=\delta-c v_{11} / v_{1} g=\delta+\sigma g
\end{aligned}
$$

Private < Social < Ramsey

The social discount rate > the private rate but < Ramsey rate if the degree of positionality increases with consumption and preferences reflect risk-aversion with respect to reference consumption and are quasiconcave with respect to own and

Conclusions

- Social discount rate >= Private
- Equal if $v_{2}=\beta v_{1} ; \beta$ is positionality
- Consistent with Arrow Dasgupta (2009)
- Bigger if Positionality increases over time
- This can be internalised through a tax
- Social Rate < Ramsey.
- Implications for Climate change Debate

2 sectors, C\&E with different rates $\sigma=0,5$

C gets bigger but the price of E goes up FASTER

So the value share of E rises

After some time E dominates

Val share

Therefore variation in discount rate $\rho=0.01, \sigma=0.5, \alpha=1.5, \gamma^{*}{ }_{o}=0,1 g_{C}=2.5 \%$

5-20\% For now and forever...

Presenting Future costs clearly

Costa \& Kahn, The Rising Price of Nonmarket goods, AEA Papers \&P

Table 1-The Value of Life in 2002 Dollars, 1900-2000

Year	Value of life
1900	$\$ 427,000$ (predicted)
1920	895,000 (predicted)
1940	$1,377,000$
1950	$2,426,000$
1960	$2,884,000$
1970	$5,176,000$
1980	$7,393,000$
2000	$12,053,000$ (predicted)

