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Abstract
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1 Introduction

Ride-hailing (RH) services such as Uber and Lyft have greatly expanded worldwide by offering
an affordable, flexible and convenient mode of travel in urban areas. These services rely on
smartphone-based applications to match drivers with private vehicles with users desirous of
rides. There has been massive growth in their usage since they entered major metropolitan areas
a decade ago: between 2017 and 2019, the number of monthly active Uber users more than
doubled, from 49 to 111 million.?

RH services remain an important component of urban transportation, in particular, several
studies highlight the influence of RH services on two critical traffic-related externalities, specif-
ically congestion and air pollution (e.g., Tarduno 2021, Li, Hong, and Zhang 2017, Erhardt
et al. 2019, Nelson and Sadowsky 2018, Agarwal, Mani, and Telang 2021, Ward, Michalek,
and Samaras 2021). Yet, in previous explorations of the broader welfare implications of RH
services, externalities related to traffic congestion and pollution were unaccounted for largely
due to data constraints.? To address this, many of these previous studies utilized surveys, mobile
application data, or computer simulations, but very few addressed this relationship using high-
resolution traffic data which could provide a more detailed and objective basis for assessing
traffic flow patterns. Furthermore, studies examining the effect of RH services on various mea-
sures of congestion (e.g., vehicle speeds, travel time) typically focus on cities that were initially
targeted, mainly major metropolitan areas (e.g. Tarduno 2021, Erhardt et al. 2019, Agarwal,
Mani, and Telang 2021), with little known regarding the effects at smaller urban agglomerations

In this paper, we investigate the effects of RH services on two key automobile externalities in
California: congestion and air quality. The negative effects of traffic congestion, such as wasted
productivity, are well noted (e.g. Parry, Walls, and Harrington 2007), and so are the health
risks from excess exposure to air pollution, including cardiovascular or respiratory disease and
worsened infant health outcomes (e.g. Currie et al. 2014, Neidell 2004). We focus on freeways

(as opposed to city streets) due to the availability of real-time traffic data, noting that freeways

1. Source: https://www.statista.com/statistics/833743/us-users-ride-sharing-services/

2. To illustrate, a study by Cohen et al. (2016) finds increased consumer surplus resulting from the availability
of on-demand transport services provided by Uber, but doesn’t account for either congestion-related or pollution-
related externalities.
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in California are among the most congested in the U.S., with traffic congestion imposing costs
of $28 billion annually due to wasted time and fuel.?> This problem is expected to worsen
as California’s population is predicted to increase by 50 million. As a result, an assessment
of how RH services contribute to freeway congestion could help policymakers calibrate RH
service-related regulations.

We leverage the spatial and temporal variation of Uber’s entry# into different counties in
California using a panel-based difference-in-difference (DiD) framework. It is unlikely that
factors affecting freeway congestion or air quality are correlated to when (and if, as we later
suggest) Uber enters a given county, since both the entry decision and the precise entry date are
based upon idiosyncratic factors independent of the specific levels of congestion and pollution
concentrations in a county.> Our data include different traffic measures at the county and hourly
time-scale along freeways in California and are derived from the Caltrans Freeway Performance
Management System (PeMS). Our outcomes of interest include the following county-level
aggregates: a measure of average speed (called “travel efficiency”), a vehicle delay measure,
and vehicle miles traveled (VMT), where the first two are alternative (and complementary)
measures of congestion while the last one measures traffic volume. In regards to pollution
outcomes, we focus on four criteria air pollutants as designated by the U.S. Environmental
Protection Agency (EPA): fine particulate matter (PM2.5), nitrogen dioxide (NOs), ground
level ozone ozone (O3), and carbon monoxide (CO). These pollutants are known primary or
secondary pollutants associated with vehicle emissions that are regulated by the U.S. EPA due
to their health-related risks.

‘We make two important contributions to the literature. First, our measures of traffic outcomes
utilize high-resolution hourly sensor data along freeways throughout California, enabling us to
explore heterogeneous effects along two key dimensions: hour of day and county characteristics.
We thus provide the first high-resolution empirical estimates of the effects of Uber’s entry on

traffic patterns over a large geographic scale, complementing existing work that has focused on

3. Source: rebuildingca.ca.gov/congested-corridor.html

4. Following previous literature, we focus only on Uber, since the share of Lyft (which also operated in CA
during 2009-2015), is very low (at 6% for all of the U.S. Anderson and Davis (2021)).

5. This line of reasoning is consistent with several other studies in economics examining the effects of Uber
on a variety of outcomes (e.g., Hall, Palsson, and Price 2018, Barreto, Silveira Neto, and Carazza 2021, Barrios,
Hochberg, and Yi 2020, Nelson and Sadowsky (2018)).
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a single city or a handful of large cities (e.g.,Tarduno 2021, Agarwal, Mani, and Telang 2021,
Erhardt et al. 2019). The focus in the existing literature on large or densely populated cities
may obscure the degree to which the effect of RH services differ across urban areas of varying
sizes, especially as RH services continue to expand into smaller or medium-sized areas. We
explore whether there is any significant heterogeneity in the effect of Uber’s entry on traffic and
pollution outcomes across different county characteristics in California, as observed for other
travel modes such as public transit, following Uber’s entry (Hall, Palsson, and Price 2018).
Furthermore, the effects of RH services on traffic outcomes are likely sensitive to time-of-day,
since congestion-related externalities are often greatest during peak travel times. Yet, very few
studies (e.g., Tarduno 2021, Agarwal, Mani, and Telang 2021) use traffic data detailed enough
to observe intra-day variation, making it difficult to assess if RH services alleviate traffic during
these peak travel times. Using these hourly-traffic data, we examine the effect of RH service’s
entry during different hours of a day to more precisely characterize the effect of Uber upon
congestion.

Second, we evaluate the effects of RH services on air pollution throughout California.
Though air pollution is clearly linked to traffic outcomes, this relationship is often complex
and varies across space and time. To our knowledge, very few studies (e.g., Ward, Michalek,
and Samaras 2021) explicitly examine the relationship between RH services and air pollution
empirically. Yet, a greater understanding of the environmental effects of RH services is needed
for policymakers to fully assess the externalities and costs associated with the introduction of
RH services in a given county or city.

Our main results are that, for the average county entered and the average hour on a weekday,
Uber’s entry is associated with reduced freeway vehicle delay, our preferred measure of conges-
tion, of 0.19 seconds per capita. This implies freeway traffic congestion fell by approximately
13% of average hourly vehicle delay in treated counties, a sizeable reduction in congestion. This
fall in congestion is consistent with the increase in travel efficiency, an alternative congestion
measure, by 2.5%. We also find that traffic volume, measured by VMT, increased by 8%. As
for pollution, we find that for the average county entered, daily weekday PM2.5 concentrations

decreased by up to 10% after Uber’s entry, though we find no significant effect on any of the



other pollutants.

However, we also show the effects of Uber’s entry on freeway traffic and pollution outcomes
are sensitive to hour-of-day and county characteristics, specifically population. For the five
most populated counties in California and for counties in Southern California, we find worsened
congestion of 0.2 seconds per capita, which is comparable in size to our main result, while
in less populated counties and outside southern California, congestion improved. In the most
populated counties, we also find increases in O3 of 0.91 ppb (3% of average Os) and NO,
of 1.25 ppb (8% of average NO,), while in other counties we find large reductions in PM2.5
concentrations. Additionally, we show that congestion worsened during evening rush hour by
four times the main result, while there was major congestion relief during non-peak travel times,
specifically the afternoon and nighttime.

While our reduced form approach makes identifying causal mechanisms challenging, we
nonetheless provide suggestive evidence that our findings, of reduced congestion on average
with significant heterogeneity across counties, are likely driven by changes in county-level
transit ridership and vehicle ownership. The literature on the effect of RH services on mode
split, especially public transit, is mixed and yields nuanced findings, depending on city size, trip
characteristics, and type of transit (e.g., Hall, Palsson, and Price 2018, Nelson and Sadowsky
2018). Similarly, the link between RH services and vehicle ownership is also ambiguous due
to the absence of high resolution vehicle ownership data (e.g., Ward, Michalek, and Samaras
(2021)). Using monthly transit ridership, we find that in counties where per capita transit
ridership is high, especially in counties where rail-based transit is available, vehicle delay
decreases following Uber’s entry. This suggests a complementary relationship, at least for
these county groupings, between public transit and Uber. This is further reinforced by our
findings using annual vehicle registration data. In counties where vehicle ownership is relatively
low (which includes many counties with high transit ridership), we also find Uber’s entry is
associated with reduced vehicle delay. The latter finding suggests following Uber’s entry, people
may shift to alternative transportation modes, such as public transit.

The remainder of this paper is structured as follows: sec:Data-Summary-Stats discusses the

data sources and presents summaries while section 3 presents the empirical analysis for traffic



outcomes. Section 4 presents suggestive evidence that public transit usage and automobile own-
ership may represent two prominent channels through which Uber’s entry affects congestion.
Section 5 presents our main empirical results regarding the effects of Uber on pollutant con-
centrations. Section 6 briefly discusses valuing the impacts of Uber’s entry on congestion and
pollution and section 7 concludes. A supplementary online appendix presents further details

related to the sample, summary statistics along various dimensions and robustness checks.

2 Data and Summary Statistics

2.1 Data

We assemble a dataset consisting of three distinct components: data on Uber’s entry into
California’s counties, data on freeway congestion, and data on pollution concentrations. Dates
of Uber’s entry into different counties are derived from a compilation of entry dates by Forbes
(up to December 2014) from Uber’s now defunct blog (blog.uber.com), local news articles on
Uber’s global launch cities and dates,® and a dataset from the study by Hall, Palsson, and Price
2018 (up to the year 2015). Table 1 shows the exact date of Uber’s entry into different counties
in California between 2009 and 2015, our study period. Following the previous literature, we
focus on the entry of the more affordable, widely used (and default on the Uber app) service,
UberX, instead of the elite service UberBlack.

For freeway traffic outcomes, we use data from the PeMS (California Performance Mea-
surement System, http://pems.dot.ca.gov/), which is maintained by the California Department
of Transportation and collects real-time data every 30 seconds from detectors placed along
freeways statewide as well as data from partner agencies. County-level aggregate data from
PeMS are obtained at the hourly time-step for our analysis. A key reason for our choice of a
county as the unit of analysis (instead of the city) is data availability, which is significantly better
at the county-level than at lower levels of aggregation for our main outcomes of interest: traffic

and pollutant concentration.” Furthermore, while Uber primarily enters at the city- as opposed

6. See https://github.com/voxmedia/data-projects/tree/master/verge-uber-launch-dates

7. We note that both pollution and freeway congestion are relatively larger-scale phenomenon, since they cross
typical small-scale aggregates such as neighbourhood or census-tract-level. To illustrate, Anderson and Davis
(2021) find that the average Uber trip was five miles in length, with the 90th percentile being as long as ten miles
(p-4). In consequence, the use of a market-entry indicator is a good proxy for changes in traffic and pollution
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to the county-level (with the exception of Orange county), it usually enters the largest city in
that county (with Riverside, Santa Barbara, and Monterey County being exceptions). Finally,
RH services such as Uber are regulated at the state level: the California Public Utilities Com-
missions (CPUC) is responsible for creating statewide policies governing RH services.® Cities
can supplement these with special restrictions and regulations, such as where RH services can
operate. As long as RH services adhere to these rules, they can operate anywhere in California,
meaning there is no significant impediment to considering the county as our unit of analysis,
especially since traffic patterns (and therefore pollutant emissions) in areas outside the main
city entered are also likely affected.®

PeMS provides a data-rich setting to observe the effects of Uber’s entry on various measures
of freeway traffic (see appendix A.4 for details). We collect information on the three key traffic
outcomes. First, vehicle delay, which represents the total number of extra seconds a vehicle
spends on freeways in a given county relative to the time it would have spent at a standard
free-flow speed of travel of 60 mph. Vehicle delay is a reliable measure of congestion, since it
reflects changes in time actually spent on a freeway relative to that of an idealised vehicle speed
absent congestion. This measure is complemented with an alternative, imperfect measure of
congestion, travel efficiency, which is an aggregate travel speed measure calculated by dividing
VMT by vehicle hours traveled (VHT). Third, we use data on VMT, which is the sum of miles
driven in a given county, as a measure of traffic volume that is commonly used in the literature.°

Our other outcome of interest is pollutant concentration, and we obtain information on the
average daily concentrations of CO, PM2.5, NO, and Oj at the county-level from the U.S.
EPA. We focus on these four pollutants because they are “criteria pollutants” regulated by the
U.S. EPA due to their health risks and are known primary or secondary pollutants of vehicle
emissions. In California, data from the 2014 U.S. EPA National Emissions Inventory report

showed that mobile sources directly contributed to 28% of CO, 72% of NOx, 5% of PM2.5,

patterns following Uber’s entry into a county or city.

8. See https://tinyurl.com/mrcfjdyr for details.

9. We note that infrastructure planning is coordinated either by the largest city in the county or by the county
itself, meaning that traffic patterns are affected around the entity approving entry of the RH service. Consequently,
congestion and traffic outcomes at the county-level better captures the effects of the entry of RH services.

10. We note that for both traffic and pollutant concentration, data is missing for many sparsely populated counties,
with data for about 37 (out of 58) counties largely available for analysis. See appendix A.5 for details.
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and 6% of VOC emissions, the latter of which contributes to ground-level ozone. However,
this does not account for the much larger amount of PM2.5 formed as a secondary pollutant
from gaseous mobile sources, so the effect of transportation on PM2.5 is actually much greater
(US EPA 2015).

We also control for annual socioeconomic (SES) characteristics at the county-level including
information from the 1-year American Community Survey (ACS) between 2009 and 2015 on
median age and income, population density, the number of people unemployed, and the number
of people who have high school degrees or higher education at the county-level.!! Finally, since
weather patterns are known to affect both traffic outcomes and pollutant concentration, we obtain
daily maximum temperature and precipitation from the National Centers for Environmental
Information and include them as controls in all our specifications. We use average daily

measures across all weather stations at the county-level.

2.2 Summary Statistics
Table 2 presents the means of annual socioeconomic characteristics (panel A), weekday hourly
traffic congestion (panel B) and weekday daily air pollution (panel C) in counties where Uber
never entered (‘“Never treated counties”) and counties where Uber entered at some point between
2009 and 2015 (“Treated counties). Column 1 shows means throughout our study period across
all counties, while columns 2 and 5 show means during the entire study period for never treated
and treated counties (resp.). In never treated counties between 2009 (column 3) and 2015
(column 4), there is a reduction in population density, median income, travel efficiency, and
among all pollutants except Os,!? over the sample period. However, vehicle delay and VMT per
capita increases. We find a similar pattern for treated counties (columns 6 and 7), suggesting
that both groups of counties experience trends in the same direction (upward or downward).
Results of the t-test in the last column show statistically significant differences along all

socioeconomic characteristics. Median income, age, number of high school graduates per capita

11. Some counties, specifically Amador, Calaveras, Colusa, Del Norte, Glenn, Inyo, Mariposa, Plumas, San
Benito, Siskiyou, Tehama, Trinity and Tuolumne, did not have information available in the 1-year ACS, in which
case, we used data from the 5-year ACS, where data from the 2009-2013 5-year ACS represented the years 2009
to 2012 and data from the 2013 to 2015 5-year ACS represented 2013 to 2017.

12. To put these figures in perspective, we take the case of PM2.5, and note that the U.S. EPA’s 24-hr PM2.5
standard is 35 pg/m?® (https://tinyurl.com/epa-pm25). The 24-hr standard is met if the 98th percentile of 24-hr
PM2.5 concentrations in a given year (averaged across the preceding 3 years) is < 35 pg/m?.
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are greater in never treated counties, while population density and the number of unemployed
per capita are higher in treated counties. Among our outcome variables, travel efficiency and
vehicle delay are greater in treated counties, while VMT is higher in never treated counties.
Finally, concentrations of PM2.5, CO, and Os are higher in never treated counties while NO; is
greater in treated counties.’®> In consequence, we include several control variables to account
for many of the key determinants of Uber’s entry suggested in our data and identified in previous

studies.

3 Traffic Congestion

3.1 Empirical Specification

We investigate the effects that Uber’s entry exerted on freeway traffic congestion and volume
in California. We use Uber’s entry into a county as our source of identifying variation. While
details of our identification strategy are discussed further below, we note that two important
features related to Uber’s entry aid our identification strategy. First, congestion (and traffic
volume) was unlikely to be the main motivator of the precise timing of Uber’s entry into a
county, meaning that the timing of entry into a given county can be considered to be essentially
random, conditional on observables.”* In addition, there were no documented large-scale
changes in transit or road usage patterns related to Uber’s entry. We anticipate that any
differences in congestion identified between counties entered by Uber and those not entered
were largely driven by Uber itself (conditional on relevant covariates). We therefore use a
panel-based difference-in-difference (DiD) framework to estimate the effect of Uber’s entry on
weekday freeway traffic congestion and volume. We use the following specification,

traffic.,;, = ayuber,+timey,+date;+county +-county x year ,+SES . +weather +e. (1)

13. The latter likely reflects major improvements in air quality in large cities. For example, of the 14 counties
currently in non-attainment (i.e., an area that does not meet the air quality standard as outlined by the U.S. EPA,
see https://tinyurl.com/2dasabdc), only four are treated counties.

14. This reasoning holds with greater strength for pollution outcomes. While congestion contributes to pollution
levels, they are also strongly affected by geography and climatic factors and weather patterns. Consequently, it is
unlikely that Uber chose to enter a county on a specific date based upon the county’s pollution outcome, meaning
that Uber’s date of entry to a county can be considered essentially (conditionally) random.

9
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where traffic.;,; represents one of the following three weekday-only traffic outcomes for county ¢
during hour / and date ¢: VMT, vehicle delay in seconds at a travel speed of 60 mph, and travel
efficiency, with VMT and delay (which represent county-level totals) normalized by population.
The independent variable of interest is uber which is a dummy variable equal to 1 if Uber
is active in county c on date . We also include county fixed effects (county) and in time,
we include a dummy variable for federal holidays and hour-of-day fixed effects, week fixed
effects, month fixed effects, day-of-week fixed effects, and year fixed effects. We also include a
linear date trend, county-year trends (county x year) and weather variables, specifically daily
precipitation and a quadratic in maximum temperature (weather).!s

We also include several county-year-level variables representing socioeconomic character-
istics (SES) that could influence traffic outcomes, including median age, population density
(population per mile?), number of people with at least a high school degree by age 25 and
number of unemployed civilians who are 16 years or older (both normalized by population),
and median income per capita. Finally, the error term, €, represents other factors that affect
our dependent variables that are unaccounted for in eq. (1). Standard errors are clustered at the
county-year level (with 239 clusters in total) to account for serial correlation in a given county
and year.

Our set-up in eq. (1) differs slightly from the standard panel data DiD set up with all treated
units subject to contemporaneous treatment. Of the 37 counties in California for which we have
data in 2015, Uber eventually entered only 19 (see Table 1), and at different points in time.
Thus, the coeflicient of interest, o, is identified from both the differential timing of entry for
the treated counties and from the presence of counties that Uber did not enter (i.e. the variation
used is both in timing and the occurrence of entry). Thus, control counties at time ¢ include not
only “never treated” counties but also all counties that Uber had not entered at time ¢ but did
so subsequently, !¢ a framework that has been used in empirical studies more recently.”” Two

underlying assumptions ensure identification of the coefficient of interest, a;. First, Uber’s

15. Alternative specifications using cubic splines for temperature and precipitation yielded identical results.

16. Were Uber to have entered all counties eventually, then the only source of identification would be differential
timing of entry while if Uber entered only a few counties but did so on the same date, identification would have
been on the basis of differential traffic outcomes between treated and control counties.

17. For example, Novan and Smith 2018 investigate the effect of energy efficiency rebates for households, who
receive rebates at different times, in the Sacramento region in California.
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decision to enter a county and the precise timing of that entry is not based upon unobserved
and transitory factors, but is (at least partly) idiosyncratically determined.’® This approach
of leveraging Uber’s entry as an identifying source of variation has been used many times to
explore a range of outcomes (see footnote 5). We also note that our specification accounts
flexibly for policies or institutions that are fixed over space and time by including fixed effects
along spatial and different temporal dimensions. As a result, omitted variable bias, driven by
factors that affect traffic and correlate with the timing of Uber’s entry, is unlikely to be of much
concern. The second is the “common trend” assumption, which for our setting, requires that
neither treatment timing nor selection into treatment are allowed to depend upon anticipated
shocks to untreated potential outcomes in any period.’® We evaluate this aspect subsequently
and provide evidence suggesting that these conditions are very plausible.

Our study differs from previous work relating RH services to congestion in two important
ways. First, we measure traffic outcomes across a large cross-section of counties in California,
leading to an arguably increased possibility that the effect of Uber’s entry will vary based on
population size or other characteristics (e.g., transit accessibility). Second, our focus is on
traffic and congestion on freeways, as opposed to surface streets, the latter of which has been the
focus of previous work. Uber’s entry may affect freeway congestion differently than on surface
streets for many reasons. For instance, “deadheading”, which represents travel undertaken
while waiting for a customer or driving to and from a customer, may be less of a concern on
freeways than on surface streets. Furthermore, in counties with limited public transit, buses
are typically a better substitute for travel along surface streets than on freeways, which could
affect the decision to use RH services. While these aspects make it more challenging to assess
if oy should have a positive or negative sign, findings in the prior literature suggest there is
greater reason to assume that Uber has a positive effect on vehicle delay, our main measure of

congestion, meaning an expectation of a; > 0.

18. Observed and known factors (such as differences in levels and patterns of traffic congestion across counties) are
allowed to influence Uber’s decision to enter a county (and its timing) without affecting identification. Furthermore,
previous studies report that Uber’s entry decision (i.e. choice of metropolitan region to enter) is largely a function
of population and economic size, an observable accounted for in all our specifications.

19. §2.3 of Callaway and Sant’Anna (2019) (p.12) summarise this: “the parallel trend assumption does not permit
units to select into treatment in period ¢ because they anticipate a negative ‘shock’ to their untreated potential
outcomes in that period”. See also §II.B, Goodman-Bacon (2018)
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3.2 Results

Regression results for our main specification (eq. (1)) are presented in Table 3, where odd-
numbered columns show coefficients without socioeconomic controls while even-numbered
columns show coefficients with those controls included. Columns 1 and 2 show the effect of
Uber’s entry on weekday freeway travel efficiency, for which we see a statistically significant
(p < 0.05) increase of 1.65 and 1.52 mph (resp.) at the hour-date-county level in the treated
counties. To understand the magnitude of this effect, we note that 1.65 represents 2.6% of
the pre-2013 mean travel efficiency in treated counties.?? Next, columns 3 and 4 show effects
of Uber’s entry on our preferred measure of freeway congestion, weekday per capita vehicle
delay in seconds (at a free-flow speed of 60 mph). We find a statistically significant reduction
in delay of 0.19 seconds in column 4, which represents approximately 13% of the pre-2013
mean vehicle delay in treated counties, suggesting a sizeable improvement in freeway traffic
congestion on average. Finally, column 6 shows a statistically significant increase of 0.024
miles in VMT per capita, our measure of traffic volume, which represents 8% of the pre-2013
VMT per capita mean in treatment counties. We note that the size of coefficients for all traffic
outcomes measures are unaffected by the inclusion of socioeconomic characteristics.

Next, we evaluate the plausibility of the “common trend” assumption and provide suggestive
evidence that the effects upon traffic we observe relate specifically to treatment and to treated
counties. In particular, if Uber’s entry into a county was systematically related to observed
changes in traffic (as we assume in our main specification), then traffic outcomes in periods
prior to Uber’s entry ought to be indistinguishable between treatment and control counties.
To observe dynamic changes in traffic before and after Uber’s entry, we use an event-study
approach. We allow Uber’s entry to exert an effect on traffic prior to and after entry into a
county and evaluate this hypotheses using the framework below, which is similar to our main
specification in eq. (1).

4
traffic;, = Z 0.U C’i + time, + weather.; + county, + 7, 2)
k=—5

where {U% } represent indicator variables that equal 1 during k 90-day window(s) after (before,

20. The 2009-2012 (“pre-2013”) period means for all traffic outcomes are presented in Table A6. We use pre-
2013 means as a point of comparison (here and later on) since these data are “uncontaminated” by Uber’s entry
given that the first entry of Uber occurred towards the second half of 2013.

12



if k < 0) Uber enters county ¢.2! In other words, U], takes the value 1 for the first 90-day window
after entry and is 0 otherwise. If & = 2, then U2 equals 1 on days 91 to 180 after Uber’s entry.
We use 90-day windows, which is approximately a quarter, to account for macroeconomic
changes and because previous work suggests Uber’s popularity grew slowly over time after
entry dates.?? The coefficients of interest are the {6y}, which represent the effect of each 90-day
window on congestion in treatment counties. Specifically, the coefficient, 6, shows the effect
of Uber on traffic in treated counties one 90-day window after Uber’s entry (k = 0), relative
to periods more than 450 days prior to (k = —5) or 360 days post (k = 4), Uber’s entry. We
also include county fixed effects and the same time fixed effects (time) and weather variables
(weather) as defined in eq. (1). Standard errors are clustered at the county-year level. If our
identification strategy is valid, then we anticipate that the effects of Uber on traffic congestion
are observed after or near Uber’s entry period.

The coefficients of interest (#;) are plotted with 95% confidence intervals in Figure 1, for
up to four 90-day windows (or 360 days) post-entry and five 90-day windows prior to entry.
The horizontal red line represents zero and the dashed vertical line separates pre-entry from
post-entry periods. This figure reveals that for all 90-day windows prior to Uber’s entry, all three
traffic outcomes of interest are statistically indistinguishable between the treated and untreated
counties. Following Uber’s entry (k = 1), treated counties experienced a statistically significant
increase in both travel efficiency (panel A) and VMT (panel C), while the decrease in vehicle
delay (panel B) occurred after a single 90-day period. We then test for the joint significance of
the pre-entry and post-entry coefficients for each traffic measure: for all three traffic measures,
we can reject the null of no effect post-entry but are unable to reject the null for pre-entry
periods.

We also are unable to reject the null of equality of post-entry coefficients for all three
outcomes, suggesting that there is no significant change in the effect of Uber over the time

period of our sample. In light of recent findings that treatment effects based on differences in

21. We note that since we exclude weekends from our sample, we only consider weekdays in our 90-day windows.

22. For example, Barreto, Silveira Neto, and Carazza (2021) find that Google Trend searches for “Uber” grew
slowly after Uber’s entry, but increased more rapidly three quarters to 1 year after the entry date. Hall, Palsson,
and Price (2018) shows that effects of Uber’s entry on public transit ridership are not immediate, but also grew
slowly over many months post-entry.
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treatment timing can be biased in the presence of heterogeneous treatment effects over time
(Sun and Abraham 2021), this finding provides a measure of comfort that our treatment effects

are unlikely to be biased on this count.

3.3 Robustness Checks

We next assess the degree to which our main results in Table 3 are robust to different spec-
ifications and falsification tests. We note that all specifications considered here include so-
cioeconomic variables. We turn first to addressing concerns that “control” counties are not
comparable in many observable ways to counties where Uber entered, as seen in the summary
statistics between the “treated” and “never treated” (Table 2), with the latter counties constituting
a larger part of the “control” counties towards the end of the sample period. To illustrate these
differences, we note that the average population in a treated county, at 1.95 million, is nearly
twice that of the never-treated counties. These differences can affect many aspects, such as
transit provision, that has a bearing upon traffic congestion. We are particularly interested in ad-
dressing the threat to identification posed by time varying changes in some of these differences,
since they may lead to unobservable differences related to Uber’s entry decision.

We present two different specifications whose results suggest that these differences do not
substantively affect our main findings. First, we explicitly control for differences in population
levels by restricting our sample to counties and years with populations over 100,000 and
250,000. Regression results for these specifications are presented in panel A of Table 4, where
columns 1-3 show results for counties with > 100,000 people and columns 4-6 show findings for
population > 250,000 people. These results are qualitatively very similar to those for our main
specification, the only noteworthy changes being that the effect on VMT becomes marginally
significant and smaller while the effect of travel efficiency is halved in size. Overall, our
results suggest that the treatment effects we find are robust to the exclusion of smaller counties,
although effect size may vary across traffic outcomes. Second, we evaluate the degree to which
accounting for differences in population affects the magnitude of our estimates of congestion
relief. We evaluate this using a variant of eq. (1), where we substitute an interaction between
2009 baseline population levels and a year trend for county-year trends. Estimates from this

specification are presented in panel B of Table 4 and are larger (at 0.36) than those found using
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our main specification in Table 3.

A related concern is the order of treatment: early or late treated units may differ in specific
ways along key dimensions that could challenge conditional random assignment. We evaluate
the relevance of this threat by excluding the first three and last four counties entered by Uber
in turn. The regression results from these two restricted samples are presented in panel C of
Table 4. Columns 1 to 3 show results obtained when the first three counties Uber entered (LLos
Angeles, San Francisco, and San Diego) are excluded while columns 4 to 6 show results when
the last four counties entered (Butte, Tulare, San Luis Obispo, and Ventura)?? are excluded.
These results are again similar to those in Table 3, though the point estimates for vehicle delay
and VMT per capita become only marginally significant in columns 2 and 3.

We also check to see that specific treatment groups or treatment times and the order of Uber’s
entry are not a key driver of our results. To this end, we carry out a permutation test, wherein
Uber’s entry date is randomly assigned to counties Uber entered. Results are in Figure 2,
where the distribution of these coeflicients over 999 replications are plotted, together with the
coeflicient estimated for the actual entry date and a p-value for the hypothesis that the treatment
effect estimated using actual entry dates arises purely by chance. The fact that we can reject this
null clearly suggests that the size of the effects of Uber’s entry we find for all traffic outcomes
are too large to arise purely by a chance realisation of treatment time.

To ensure that our findings are not very sensitive to outliers in the traffic outcomes, we
carry out the following two types of checks: one, winsorize or trim the top and bottom 1%
of observations on the dependent variable, and two, expunge outliers identified using standard
metrics (i.e. Cook’s distance). The coefficient on Uber with these samples, as well as those of
our main specification for reference (light blue dashed line), are provided in Figure 3. For both
travel efficiency and delay, winsorizing (solid blue line) and trimming (solid red line) both lead
to almost no change in the effect size, while expunging outliers identified using Cook’s distance
(dashed orange line) leads to the effect size being reduced for travel efficiency and vehicle delay
(to half or three-fourths, respectively), while being significant. For VMT, trimming leads to a

slight reduction in the effect size but wisorizing and expunging outliers leads to substantively

23. Uber entered two of these counties, Ventura and San Luis Obispo, on the same date, leading us to choose the
final four—instead of three—counties entered.
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similar effects as the main specification. Overall, outliers and extreme observations do not affect
our estimated effect size in a substantive way.

In this same graph in Figure 3, we also present results from a specification restricting our
sample to only treated counties, meaning that the differences in treatment timing are the only
source of identification. Results are represented by “Treated Counties only” (green dashed line)
and are very similar to those of the main specification, with only the effect on VMT being half
the size of the main result.?*

Next, we assuage concerns that our results are sensitive to functional form. To do so, we use
the natural log of the dependent variable and note that the size of the effects obtained, in panel
A of Table 5, are unchanged qualitatively from those of our main specification: a statistically
significant increase in travel efficiency and a reduction in delay, though there is no significant
effect on VMT. Finally, we evaluate whether the relative change in populations across treatment
and control groups, and the use of a per-capita version of delay and VMT, affect some of our
findings. We show that population changes are not a key driver of our findings by examining
specifications with annual population as a control variable, instead of population density, in
eq. (1) and using levels of delay and VMT as the dependent variable. In order to minimize the
effect of scale (levels of VMT, delay and population vary significantly across counties), we use
the log of the levels of delay and VMT as our dependent variable, and add log of population
as an independent variable. Regression results for these specifications are presented in panel
B of Table 5, which suggest a statistically significant reduction in vehicle delay, but the effect
on VMT loses significance. The interpretation of the coefficient in column 2 suggests vehicle

delay will decrease on average by approximately 16% following Uber’s entry.

3.4 Heterogeneity in effect of Uber on traffic outcomes
Our main specification, eq. (1), assumes homogeneous effects across hours and counties. How-
ever, congestion is often localised both spatially and temporally, so in this section we evaluate

the question of which travel periods during a day and counties or regions within California are

24. We also carry out a falsification test using the event-study specification from eq. (2) with three socio-economic
characteristics that should be unaffected by Uber’s entry (higher education, median income, and population density).
For all three variables, Uber’s entry does not appear to affect their pattern of evolution, and no set of pre- or post-
coefficients are (jointly) significant (see Figure A3 in Online Appendix).
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most affected by Uber’s entry.

3.4.1 Intra-day variation

If Uber’s entry has a greater effect on congestion during peak travel periods, such as the morning
or evening rush hour, then the marginal benefits or costs of Uber’s entry are likely larger than
would be suggested by the estimates derived from eq. (1), which specifies a single effect over
an average hour. To examine the within-day variation of the effect of Uber’s entry on weekday
traffic outcomes, we use a variant of our main specification, where we partition the day into
five periods, generate an indicator variable for each period, interact it with the Uber indicator,
and include it in the specification in eq. (1). The five periods are: an afternoon period (10am
to 1:59pm), PM peak period (i.e. evening rush hour, 2 to 7:59pm), the nighttime period (8 to
11:59pm), and a late-night period (12am to 06:59am), with the base period being the AM peak
period from 7 to 9:59am. The definition of these these time periods, specifically the AM and
PM peak periods, are based on when traffic is expected to be greatest. By having the evening
rush hour cover a long period of six hours (which may be longer than the actual peak in many
counties), the estimated effect of Uber’s entry will likely underestimate the “true” effect in a
given county if the actual peak period is shorter than defined here.

The total effects of Uber’s entry on traffic outcomes throughout the day (i.e. the sum of the
coefficients on Uber and its the interaction terms) are displayed in Figure 4. Panels A, B, and
C show the effects upon travel efficiency, vehicle delay, and VMT (resp.) during the AM peak,
afternoon, PM peak and nighttime.?> During the AM peak period, there is no significant effect
on travel efficiency nor vehicle delay, and a marginally significant effect on VMT of 0.30 miles
per capita. During the PM peak period, there is a significant increase in vehicle delay of 0.85
seconds per capita (or 25% of the average delay during the PM peak?®), but no effect on the
other two traffic outcomes. This suggests that freeway congestion worsened after Uber’s entry
during evening rush hour, with the size of this increase being more than four times larger than
the average reduction shown in the main results. During the less congested time periods, the

afternoon and nighttime, we find a statistically significant increase in travel efficiency, of 1.98

25. The late-night period is not as relevant for congestion and pollution outcomes, so these results are not shown.
26. See Table A1 for mean traffic outcomes during different time periods in the day.
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mph, and reduction in vehicle delay of 0.68 seconds per capita, both of which are larger in size
than those in the main results. The effect on VMT is positive and marginally significant during

the afternoon and statistically significant during the nighttime.

3.4.2 Inter-regional variation

Given the physical extent of California and the significant variation in socioeconomic character-
istics, transportation-related infrastructure, and urban sprawl across its counties, there is likely
significant heterogeneity across counties in the effect of Uber on freeway traffic outcomes. Most
of the previous literature has focused on major metropolitan areas, with little known regarding
effects across urban agglomerations of varying sizes. Furthermore, higher congestion likely
exerts a greater marginal cost in more populated cities and counties, which presumably already
have worse congestion, especially if public transit is scarce. The variation across counties in
traffic outcomes (as discussed in appendix A.2) follows expected patterns: the more populated
counties (including Los Angeles, Orange, San Diego, and a few counties in the Bay Area near
San Francisco) tend to experience worse vehicle delay, while VMT per capita is a function of
many characteristics including population size. Motivated by the evident heterogeneity in traffic
outcomes, we explore next whether this heterogeneity carries over into the effects of Uber’s
entry on traffic outcomes.

We consider two particular groupings of counties in California, with the first one being
Southern California, which not only includes the most populated counties in California but is
also often characterized as a region of urban sprawl suffering from high congestion. For example,
vehicle delay is 50% higher in these counties versus counties outside southern California (see
Table A2). Southern California includes the following eight counties, all of which Uber entered
(although not all at once): Los Angeles, Orange County, Riverside, San Bernardino, San Diego,
San Luis Obispo, Santa Barbara, Ventura.?” For our empirical specification, we use eq. (1) and
include an interaction term between our treatment indicator, U ber and an indicator variable that
takes the value 1 for all counties within southern California. The estimated treatment effects of
Uber’s entry in southern California (i.e. the sum of the coefficient on Uber and its interaction

term) are displayed in Figure 5 with 95% confidence intervals, as well as the effect outside of

27. Our definition of “southern California” is from https://tinyurl.com/em568nhk
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southern California. We discuss statistically significant results only, unless otherwise noted.

These estimates suggest a high degree of heterogeneity: increases in travel efficiency (panel
A) in Southern California (““SoCal”) is much smaller, at 0.85 mph (and only marginally signif-
icant) compared to change outside the region (“Not SoCal”), at 2.03 mph. For vehicle delay
(panel B), these differences are even stronger: a marginally significant increase in delay of 0.2
seconds for counties in Southern California, and a decline in delay outside Southern California
of 0.48 seconds, which is more than twice the effect on an average county and 22% of the
pre-2013 average for these counties.?® For VMT (panel C), there is a small increase of 0.04
miles in southern California counties, but no significant effect outside. Overall, reductions in
congestion and VMT are concentrated in counties outside of Southern California, while there
is some evidence of a small increase in both for counties located within.

The second grouping consists of the five most populated counties in California, all of which
are in southern California, with each having a population of at least 2 million: Los Angeles, San
Diego, Orange, Riverside, and San Bernardino. Any additional congestion (relief) resulting
from Uber’s entry in these counties could impose significantly higher marginal costs (benefits)
in these counties. The specification used is identical to that for Southern California: an indicator
for this county grouping interacted with the treatment indicator, Uber. The treatment effect
is displayed in Figure 5, where the right side of the vertical line in each panel represents the
total effects of Uber’s entry in the five most populated counties (“Top 5”) and counties outside
(“Not Top 5). Our findings here are virtually identical to those for the southern California
specification: increases in delay (panel B) of 0.22 seconds in the “Top 5” counties, with
reductions of 0.35 seconds in counties outside. There is a smaller increase in travel efficiency
(panel A) of 1.25 mph in the Top 5 versus the 1.63 mph at counties outside. Finally, for VMT
(panel C) there is an increase of 0.054 miles per capita in the Top 5 counties, which is twice the
magnitude of the average county (or about 14% of the pre-2013 average in the Top 5 counties),

but no significant change in the other counties.

28. See Table A6 for mean traffic outcomes for the pre- and post-2013 periods.
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3.5 Discussion

Our main results in Table 3 show higher travel efficiency and reduced vehicle delay following
Uber’s entry, suggesting RH services improved freeway congestion for the average county
entered. However, at busier time periods, specifically the PM peak period, and in more
populated counties, we find that freeway congestion worsened, varying in magnitude between
being similar to and up to four times as large as our main results. We also find traffic volume
(VMT) increased both in our main results and in the more populated counties (SoCal and Top 5),
where the magnitude of this increase in the latter is twice that in our main results. Findings during
off-peak periods, specifically the afternoon and nighttime, and in less populated counties better
reflect our main results, showing improvements in freeway congestion and travel efficiency,
but no significant increases in VMT. These findings suggest not only that the effect of Uber’s
entry upon freeway congestion and volume is sensitive to county characteristics and time-of-
day, but also that the “average effect”, being weighted towards congestion relief, can provide a

misleading indication of the effects in specific types of counties.

4 Causal mechanisms

While equilibrium responses at many scales may have led to changes in freeway traffic and
congestion, we next explore the direct macro-scale effects that are most naturally analysed in
our county-level setting: public transit and vehicle ownership. While a detailed analysis of
the effects of Uber on these outcomes is beyond the scope of our study, we provide suggestive
evidence that these channels serve to explain, at least partially, our findings regarding traffic

patterns.

4.1 Public transit

One possible mechanism underlying our findings is the role of public transit: If Uber’s entry
caused individuals to shift from Uber to public transit, then one would anticipate vehicle delay
and VMT would both decrease, as seen in our main findings. To examine the relationship
between Uber’s entry, transit usage and traffic patterns, we gather data on unlinked passenger

trips (UPT), a commonly used measure of transit usage, at the month-year level from the
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National Transit Database over the sample period.?®

We recall that our findings in section 3.4 suggest significant heterogeneity in effects upon
congestion, and we hypothesize that one reason for this difference is that counties with greater
transit accessibility, and consequently, ridership, experienced different effects from Uber’s entry
than counties with lower transit usage. We examine this hypothesis in two different ways: first,
by evaluating whether the effects of Uber varied significantly among counties with “high”,
“medium”, and “low” transit usage based on UPT; and second, examining whether the effects
of Uber varied by type of transit, with rail transit in particular being considered complementary
to RH services. If counties with greater transit usage/presence or rail-based transit experience
improved (worsened) traffic outcomes, such as reduced (increased) vehicle delay, then we may
surmise that Uber acts to complement (substitute for) public transit.

To explore the first channel, we use a variant of eq. (1) with an interaction term between Uber
and two indicator variables based on a county’s pre-2013 average UPT per capita. Pre-2013
averages are used since they are not “contaminated” by Uber’s entry. The indicator variables
identify counties with “high” and “medium” UPT per capita, based on whether a county’s
pre-2013 average exceeds the 75th percentile of the pre-2013 average for all sample counties or
lies between the 25th and 75th percentile (resp.) (appendix A.2 discusses summary statistics
by transit and auto ownership category). The omitted category consists of counties with “low”
UPT per capita, defined as those counties with a pre-2013 average below the 25th percentile.
The results of this regression specification are presented in panel A of Table 6 and the total
effects of Uber show a statistically significant reduction in congestion (and increase in travel
efficiency) in the medium and high UPT counties, relative to low UPT counties.3® There is
no statistically significant effect on VMT per capita. While not definitive, these results are
suggestive of a complementary relationship between Uber and public transit usage for counties
where transit usage was already relatively high and could help explain our findings in Table 3

and Figure 5.

29. Transit agencies report these data, which captures the majority of trips in the U.S., to the FTA (Federal
Tranist Administration), which are then aggregated to the county-month-year level (they are unavailable at finer
time-scales).

30. Sample sizes in panels A and B of Table 6 are identical, but differ from the main specification since not all
counties in our sample have UPT data.

21



We next consider the effect of rail-based transit, which can carry more passengers, move at a
greater speed than buses, often covers larger distances, and may serve as more of a complement
to Uber’s services than buses along freeways. Counties with rail-based transit include Los
Angeles, Sacramento, San Diego, Santa Clara, Sonoma, Alameda, and San Joaquin, of which
Uber entered the first five. We allow for the effects of Uber to differ in these counties by
including an interaction term in eq. (1) between Uber and an indicator for the presence of rail-
based transit. The regression results for this specification are presented in Panel B of Table 6
and show that in counties with access to rail, there is a statistically significant increase in the
total effect of Uber on travel efficiency of 1.19 mph and a reduction in vehicle delay of 0.44
seconds. In counties lacking rail transit, there is a significant increase in travel efficiency of
0.81 mph and in VMT of 0.023, but no significant effect on vehicle delay.

Altogether, our results here provide some support for the hypothesis of a complementary
relationship between Uber and public transit, at least for counties that have high transit ridership
or rail-based transit, and are consistent with those in the prior literature for major metropolitan

areas nationally (e.g., Hall, Palsson, and Price 2018, Nelson and Sadowsky 2018).3!

4.2 Vehicle ownership

The entry of Uber into a county can be anticipated to affect both short- and long-run household
decisions related to personal vehicles, in particular, vehicle usage and ownership. In the
short-run, individuals may alter their vehicle usage decisions while over the longer-run, and
depending upon the interaction with public transit, Uber’s entry and easy availability may lead
to altered ownership patterns. There is limited evidence related to the ownership effect in the
literature (e.g. Ward, Michalek, and Samaras 2021). In view of these suggestive findings,
we examine if car ownership prior to Uber’s entry influences the relationship between traffic
outcomes and Uber’s entry, using annual, county-level vehicle registration data (these data are
unavailable at a finer resolution). To do so, we use our main specification in eq. (1), but interact

Uber, our treatment indicator, with a dummy variable equal to 1 if the average annual pre-2013

31. We note that our finding that high UPT counties and counties with rail transit experience a greater reduction
in congestion is consistent those regarding inter-regional heterogeneity (in section 3.4), since the overlap between
counties in “Top 5 and in southern California, and those in high UPT/with rail transit, is low (i.e. not all large
counties/counties in SoCal either have rail based transit or significant UPT per capita).
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registrations per capita for a county exceeds the 66th or lies within the 33rd and 66th percentiles,
which constitute respectively counties with “high” or “medium” automobile ownership.

We hypothesise that the effect of Uber’s entry is greater in counties with lower car ownership
(i.e. per capita registrations below the 33rd percentile), since RH services are likely in greater
demand. The regression results for the specification detailed are provided in panel C of Table 6
and show that the entry of Uber in “low” registration counties (represented by the coeflicient on
“Uber”) led to a statistically significant increase in VMT per capita of 0.03 and a reduction in
vehicle delay of 0.26 seconds. Both these coefficients are larger than those in the main results
in Table 3. While in counties with “medium” and “high” auto registrations, we only find a
statistically significant increase in travel efficiency at 2 mph.

In summary, our results suggest that counties with low automobile ownership per capita,
which are also typically counties with higher transit ridership levels, experience greater reduc-

tions in vehicle delay following Uber’s entry.32

S Air pollution

5.1 Empirical Specification
Examination of the raw pollution levels data in section 2.2 suggested that greater reductions
in air pollution may have occurred in treated counties, relative to never treated counties. To
examine this hypothesis more rigorously, we use the panel fixed-effects DiD specification in
eq. (3) below to assess the effects of Uber’s entry on weekday air pollution. We note that the
identifying assumptions and most variables used (along with their definitions) are similar to
those for traffic outcomes in section 3, with the only changes occurring to account for daily (as
opposed to hourly) effects, since only daily data are available. The specification we use is:
pollution,, = Syuber,+pPadate;+time,+SES ;+county xyear ,+weather.,+county +v.
3)
where pollution represents weekday concentrations of PM2.5, NO,, CO, and Os in county ¢

on date ¢. The independent variable of interest is uber.;, which takes the value 1 if Uber was

32. We note that data on automobile registration are available for many more counties (36) than data for UPT
(25). Consequently, despite the significant overlap between “low” automobile ownership and high UPT counties,
the differences in the two samples ensure that our findings regarding transit usage and vehicle ownership provide
complementary perspectives.
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active in county c at time ¢ and O otherwise. A linear date trend is also included in date, as
well as several time fixed effects, specifically day-of-week fixed effects, month fixed effects and
week fixed effects to account for seasonality in pollution levels, year fixed effects to control for
annual trends and a dummy variable for federal holidays. Socioeconomic factors, weather, and
county fixed effects are defined as in eq. (1). Standard errors are clustered at the county-year
level, with the number of clusters varying by pollutant since the number of time periods and
counties varies over pollutants.

The coefficient of interest is 1. If Uber’s entry is associated with reductions in air pollution
(e.g., from reduced congestion), then we expect 81 < 0, but if it is associated with increases in
air pollution (e.g., from increased VMT), then we expect 3 > 0. In view of our main results
on freeway traffic outcomes showing reduced vehicle delay, but higher VMT, the net effect on
air quality is unclear. Similar to eq. (1), identification in eq. (3) relies on the timing of Uber’s
entry to a county being (conditionally) uncorrelated with other factors that affect air pollution
(as discussed in footnote 14).

One concern with considering pollution at the daily level is the dynamics involved in
pollutant concentration over adjacent days. Several factors, such as precipitation or pollution
from the previous day, could contribute to today’s air quality. One way to account for this
dependence is to include a lagged (by a day) pollutant concentration variable to the specification
in eq. (3). Estimation of this specification raises certain challenges however, since least-squares
estimates from lagged dependent variables with fixed effects are known to be inconsistent
(i.e. the Nickell bias). One way to deal with these challenges is to exploit the so-called
“bracketing” property (Guryan (2004)) between the county fixed-effects regression without the
lagged dependent variable in eq. (3) (“FE”) and the lagged dependent variable regression without
county fixed effects (“LDV”): if the coefficient on Uber is negative, then the FE DiD without
the lagged dependent variable in eq. (3) will underestimate the true coefficient while a lagged-
dependent-variable model without county fixed effects (in eq. (4) below) will overestimate the
true coefficient. Thus, the true effect of interest in our case will lie between these two estimates.

The specification with a lagged dependent variable (“LDV”) is:
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pollution,, =y uber. + vyapollution,, , + ysdate, + time;
’ 4)
+ SoCal x year, + SES.; + Qweather . + v,

where pollution,, , represents a 1-day lag of the outcome variable and instead of county-year
trends, we include year trends for the region of southern California (SoCal) as defined in
section 3.4.2.33

The interpretation of the coefficient of interest (7;) is similar to that of ; in eq. (3). We
also explore an alternative approach to lagging pollution outcomes: aggregation of pollution
to a higher temporal scale, seen in other studies to reflect seasonal changes in air pollution
(e.g. Neidell 2004). Therefore, in an alternative specification, we use weekly average pollutant
concentration, and produce a weekly version of our fixed effects specification in eq. (3), excluding

the linear date trend, day-of-week fixed effects, and the dummy variable for a federal holiday.

5.2 Results

Our estimates on the effect of daily weekday pollution from Uber’s entry are presented in Panel
A of Table 7. Odd-numbered columns show estimates from eq. (3), the “FE” or county-fixed-
effect specification (without lagged air pollution) and even-numbered columns present estimates
from the “LDV” specification in eq. (4) that excludes county fixed effects but includes the 1-day
lagged pollutant concentration. Estimates show statistically significant reductions in PM2.5, a
key metric of urban air pollution, in columns 1 and 2 between 0.3 and 1 pg/m? (resp.) per day
after Uber’s entry into a county. To provide context, these estimates represent between 2.9 and
10% of pre-2013 average PM2.5 in treated counties (pre-2013 pollution averages are presented
in Table A7). For the remaining three pollutants (NO,, O3 and CO), our estimates show
no statistically significant effect of Uber. Panel B in Table 7 presents estimates using weekly
aggregate pollution concentration, an alternative measure of exposure, and we find a statistically
significant reduction of 1.1 pg/m3, almost identical in magnitude to the FE specification from
Table 7. Similar to the bracketing approach, however, no significant reduction in pollution is

33. Considerations similar to those related to the inclusion of county fixed effects (in the LDV framework)
preclude the use of county-year time trends (as in eq. (1)), leading to the use of region-specific time trends. We
also consider two alternative specifications: (i) using the five-most-populated counties (instead of counties located

in southern California) as an alternative definition of region; and (ii) excluding time trends altogether. Both
specifications yield very similar results to those of our main specification in eq. (4).
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observed for the other three pollutants.

We note that robustness checks for pollution are presented in Appendix A.6, where we carry
out the same checks as for traffic outcomes in section 3.3, suggest. They suggest that our main
findings regarding the effects of Uber on pollutant concentration are robust to specification

checks, permutation tests and different ways of dealing with outliers.

5.3 Heterogeneity in effects of Uber on pollutant concentration
Similar to the reasoning for traffic congestion, we anticipate that there may be a degree of
heterogeneity across counties in the effects of Uber’s entry based on population (see section 3.4).
Our analysis here closely parallels that for traffic outcomes: we focus on the two regional
classifications, southern California (“SoCal”) and the five-most-populated counties (“Top 57);
and interact indicators for these regions with the Uber indicator in their respective specification
(FE, LDV and weekly aggregate). The effects of Uber in southern California are presented
in Figure 6, from which a few findings follow. First, we find that the weekly and “FE”
specifications yield nearly identical results for all pollutants. Second, in southern California,
we show a statistically significant small increase in O3 (panel C) of 0.91 ppb (about 3% of these
counties’ pre-2013 mean counties) using the “FE” and weekly specifications, but find no effect
on PM2.5. However, we also show a larger reduction in O3 outside southern California (“Not
SoCal”) at 1.35 ppb (or about 5% of the pre-2013 average in these counties). Additionally,
we find counties in “Not SoCal” experience a statistically significant reduction in PM2.5 of
up to 1.36 pug/m® (which is about 40% larger than the main result). Results for the “Top 57
grouping are displayed in Figure 7, and our findings are very similar to those for the “SoCal”
grouping for PM2.5 and Os, with the only difference being a statistically significant increase
(across all three specifications) in NOs in the “Top 5 up to 1.25 ppb (which is a sizeable 8%
of the pre-2013 average for the top 5 most populated counties). There is no significant effect in
the other counties.

Overall, patterns in air quality associated with Uber’s entry closely mimic those of our
freeway traffic outcomes, specifically for vehicle delay (as opposed to VMT) which decreased
on average, but worsened in more populated counties. Similarly, we show reductions in daily

weekday PM2.5 on average, but show other pollutants (O3 and NO-) actually increased in more
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populated counties. These results reinforce how aggregate average effects of Uber’s entry can

provide an incomplete accounting of its true effect on freeway traffic and air quality.

6 Valuing the Effects of Uber’s entry

Previous studies have documented the effects of the entry of RH services on transit usage (Hall,
Palsson, and Price (2018)), automotive fatalities (Barreto, Silveira Neto, and Carazza (2021) and
Barrios, Hochberg, and Yi (2020)), labour markets (Hall and Krueger (2017)) and congestion
(Tarduno (2021)) among others. We attempt a modest and simple exercise aimed at exploring
the potential magnitude of costs and benefits arising from Uber’s entry based upon our empirical

estimates.

6.1 Value of Uber’s entry on congestion

We begin by quantifying the effect of Uber on congestion in the average county Uber entered.
To do so, we use the coefficient on the vehicle delay measure from our main specification, in
column 4 of Table 3 of 0.19 seconds per capita (at an ideal speed of 60 mph) per hour on
weekdays. This figure is then multiplied by half the current median hourly wage in California
($11.74) (U.S. BLS 2021), which represents the value of travel time per hour of delay per
capita. We multiply this figure by a quarter of the total population in treated counties in 2013,
the first year of Uber’s entry into counties in California, to represent the population affected
by Uber in a given hour (approximately 15.3 million).3* This results in aggregate congestion
benefits of $4,598 in a given hour and date in California. This number is then multiplied by
260, the approximate number of weekdays in a year, yielding the annual hourly benefit from
the reduction in delay of $1.2 million. We then multiply this by 12 hours to capture the time
during which the majority of cars are on the road, so the annual daily benefits of reduced delay
on freeways in treatment counties is $14.3 million. The only comparable study to ours, Tarduno
(2021), finds that for Austin alone, congestion related costs of RH services amounted to $33 to
$52 million annually. The spatial aggregation of vehicle delay involved in our analysis at the

county-level will smooth out congestion peaks on the most congested freeways in every county

34. We use a quarter of the population to account for a large fraction that does not drive at any given hour,
encompassing populations that cannot drive (e.g., anyone under the age 15), users of public transit and in general
all non-drivers at an average hour. While this figure will overstate road users at non-peak hours, it is likely to
understate users at peak, meaning that overall, it is likely an appropriate estimate.
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(with associated congestion cost spikes), so the magnitude of benefits we find for California
appear reasonable.

However, the average benefits estimated above fail to account for the heterogeneous effects
of Uber’s entry upon congestion, so we also explore how accounting for heterogeneity in Uber’s
effects influences the value of congestion-related benefits.3> We begin with heterogeneity across
hours of the day, for which our results showed statistically significant results during the PM peak
period (2-7:59pm), afternoon (10am-1:59pm) and nighttime (8-10:59pm) (Figure 4). First, we
estimate congestion costs associated with increased vehicle delay during the PM peak period,
modifying the approach used for average congestion effects in two ways: by multiplying the
annual hourly cost/benefit from a change in delay by the number of hours during that time
period (e.g. the PM peak period is a 6-hr period); and, for the PM peak period, using a third of
the population of treated counties, since more drivers are likely to be on the road during these
hours. We find annual congestion costs of approximately $42.8 million during the PM peak
period in treated counties. During the afternoon and night-time, on the other hand, we find
congestion relief benefits of $17.1 and $13.6 million (resp.).

Next, we explore differences in congestion costs and savings by region, where Figure 5
shows more-populated county groupings experiencing worsened congestion. We use a similar
approach to calculating heterogeneous effects throughout the day and find annual congestion
costs of $11 million resulted from Uber’s entry in southern California counties and congestion
benefits of $9.9 million in counties outside this grouping. Turning to the second categorisation,
the five-most populated counties in California, we estimate congestion costs of $11.2 million
resulting from Uber’s entry, while counties outside realised benefits amounting to $8.6 million.
The main reason for the larger effects in these two county groupings is the larger population
concentrations.

In summary, our findings suggest that Uber’s entry may have reduced welfare by increasing
congestion at the most congested times of the day and in counties already experiencing the
greatest congestion. The net heterogeneous effect of Uber’s entry (from Table A8) is a congestion

cost between $1.1 and $12.1 million, which differs significantly from the congestion reduction

35. The value of congestion relief across different dimensions (county groupings and time periods) discussed
here, and the simple net effect (i.e., the unweighted sum across heterogeneous effects) are summarized in Table AS.

28



benefits computed using the average treatment effect.

6.2 Value of Uber’s entry on pollution and health
Following many epidemiological studies assessing the relationship between health outcomes
and pollutants, we evaluate the effects of pollution by focusing on changes in health risks
resulting from Uber’s entry. We use figures from two widely-cited studies that that focus on
exposure to PM2.5. The first study, by Pope et al. (Pope et al. 2002), found that a 10 pg/m?
increase in PM2.5 is associated with an increase in risk of all-cause mortality by 4%. The
second, a meta-analysis of over 100 studies focused on short-term exposure (Atkinson et al.
2014), found that a 10 ug/m?® increase in PM2.5 was associated with a 1.04% increase in risk
of death (which varied by region). Our estimates in panel A of Table 7 associate Uber’s entry
with a reduction in (average daily weekday) PM2.5 concentration of between 0.3 (LDV) and
1.09 (FE) pg/m3. Using estimates from our preferred specification (FE) and assuming a linear
relationship between pollution and risk of death, on average, Uber’s entry is associated with
a 0.1% to 0.4% reduction in risk of death in treated counties. In counties outside southern
California or the top 5 most populated counties, the effect is slightly larger, between 0.2% and
0.6%.3¢

However, Figure 6 and Figure 7 show increases in daily or weekly O3 and NO, concentrations
upto 1.2 and 1.26 ppb (resp.) in southern California or the five-most populated counties. Outside
these counties, daily or weekly O3 concentrations decreased up to 1.35 ppb. To put these results
for Os in perspective, a long-term study of O3 and mortality in almost 100 U.S. cities by Jerrett
et al. 2009 found an increase between 2.9% and 4% in the risk of death from respiratory
causes due to a 10 ppb increase in exposure to O3, with greater effects in cities with very high
O3 concentrations, a category that includes many cities in California (e.g., Los Angeles, San
Francisco, Sacramento). Based on these figures, Uber’s entry to southern California and the
five-most-populated counties in California is associated with a 0.4 to 0.5% increase in risk of
death from respiratory disease. This is partly offset by the decline in risk of death between 0.4

and 0.6% in less populated counties. Turning to the effects of increased NO,, another study

36. For the LDV specification, treated counties on average experience a 0.03% to 0.1% reduction in risk of death
and a 0.05% to 0.2% reduction outside southern California or the top 5 most populated counties.
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showed that an increase in 12-month NO, exposure of 10 ppb among those on Medicare, which
primarily includes those aged 65 years or older, is associated with increased mortality from
respiratory disease of 3% (Eum et al. 2019). Using our estimates of increased NOs, these
findings suggest that Uber’s entry to the five-most populated counties is associated with an

increase in mortality from respiratory disease of 0.4% among elderly adults.

7 Conclusion and Policy implications

We find that the entry of Uber to a county in California is associated, on average, with reduced
freeway congestion (vehicle delay falls by 13%, travel efficiency increases by 2.5%) and in-
creased freeway traffic volume (VMT increases by 8%). This congestion relief is in line with
our finding that, on average, Uber’s entry is estimated to reduce PM2.5 by at least 3%. These
average effects, however, mask rather significant variation across different county types and time
periods: the most populated counties and evening rush hour showed an increase in congestion
and VMT. In these more populated counties, we also show corresponding increases in NO, and
O3 (at 8% and 2% respectively). Simple calculations suggest there are both social costs and
benefits from the resulting changes in congestion and air pollution. Our results also suggest
that the accessibility of public transit, especially rail-based transit, is an important determinant
of the relationship between freeway traffic outcomes and Uber’s entry. Our results using an-
nual vehicle registration data also show a similar pattern: counties with “low” registrations,
which typically have higher transit ridership, experience preferential vehicle delay reductions
following Uber’s entry.

Apart from cautioning against the use of a single, average “effect of Uber” across space
and time, our findings also have implications for policy design. They suggest that policies
addressing traffic-related externalities arising from RH services should target more populated
cities or counties or periods of a day when Uber worsens traffic. Outside these counties and
during non-peak hours, Uber’s effects appear more beneficial, with improvements in air quality
and congestion along highways. Consequently, a statewide one-size-fits all policy, without
careful considerations of how RH services affect air quality and congestion in affected areas,

could impose greater social costs than policies tailored to local circumstances. Policy decisions
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regarding RH services may therefore be better targeted at the local level (e.g., by cities, counties)
to complement their transportation needs and economic circumstances.

Our findings also suggest future directions for research around RH services, and shared
mobility services in general, with a view to better understanding the implications for traffic
congestion and volume. First, our study focused on freeway congestion, an understudied, but
important component of commuting and travel in California. However, given the significant
variation in pattern of freeway use and traffic across the U.S., further research examining con-
gestion along different dimensions (e.g., freeways, surface streets) in contexts outside California
would help establish the external validity of our findings. Such evaluations should also focus
on areas outside major metropolitan regions, in view of the heterogeneity we report. Second,
detailed studies along the most congested routes at specific urban agglomerations (and not just at
the largest metropolitan areas) are needed to highlight the local consequences related to conges-
tion and air pollution associated with RH services. Third, RH services represent only one small
component of the growing and broader shared mobility service landscape, with other modes
(e.g., bikeshares, e-scooters) becoming more prevalent. While these services have a stated
intention of improving overall urban mobility, current work has been focused more on mode
split, with little known regarding environmental or traffic-related outcomes (e.g., Hamilton and
Wichman (2018)), particularly using micro-data. More rigorous empirical research exploring
how shared mobility services influence congestion, vehicle ownership, public transit and each
other would provide more information for policymakers and urban planners looking to leverage

such services.
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Tables

Table 1: UberX entry date for counties in California (2009 to 2015)

County City Entry date
San Francisco San Francisco 1/18/2013
Los Angeles Los Angeles 3/14/2013
San Diego San Diego 5/9/2013
Santa Clara San Jose 7/24/2013
Orange County  Orange County 9/13/2013
Sacramento Sacramento 9/30/2013
Santa Barbara Santa Barbara 10/31/2013
Monterey Monterey Bay City 2/4/2014
Santa Cruz Santa Cruz 2/4/2014
Fresno Fresno 2/5/2014
Stanislaus Modesto 4/2/2014
Riverside Palm Springs 4/3/2014
Sonoma Santa Rosa 5/12/2014
San Bernardino  San Bernardino 5/29/2014
Kern Bakersfield 6/14/2014
San Luis Obispo  San Luis Obispo 7/17/2014
Ventura Oxnard and Simi Valley 7/17/2014
Tulare Visalia 12/1/2014
Butte Chico 10/8/2015

Notes: Table shows the entry dates for UberX in California’s cities and its associ-
ated county.While UberX had a “soft” entry date in San Francisco of July 3, 2012,
we focus instead on the official entry date since this is when we anticipate its services
being more widely utilized.
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Table 5: Robustness checks: natural log specification of key variables

1 2 3
Travel Efficiency Delay (vehicle seconds) VMT per capita
(MPH) per capita
Panel A: Log of per capita traffic outcome variables
Uber 0.013%** -0.20%* 0.048
[0.0041] [0.086] [0.045]
N 1,351,881 1,259,883 1,351,881
R? 0.471 0.727 0.895
Panel B: Log of levels of dependent variables
Delay (vehicle seconds) VMT
Uber -0.20%* 0.048
[0.086] [0.045]
N 1,259,883 1,351,881
R? 0.727 0.895

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in brackets and clustered at the
county x year level. Panels A and B show variants of the regression in eq. (1). Panel A shows
results of a version with the log of the traffic outcomes as the dependent variable. Panel B presents
results from a specification differing from that in Panel A in using log of traffic outcomes in level,
instead of normalized (per capita) versions, as the dependent variable for VMT and delay, and the
inclusion of log of population as an independent variable. Sample sizes in Panels A and B differ
from those from the main specification presented in Table 3 due to the exclusion of zero values for
dependent variables. Both regression specifications have the same number of clusters, 239.
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Figure 1: Event study estimators using 90-day windows for weekday freeway traffic outcomes
This figure shows point estimates and 95% confidence intervals from eq. (2). Each tick on the x-axis represents a 90-day window either before
or after Uber’s entry. For example, the first 90-day window prior to Uber’s entry date is denoted “-1”, while the first 90-day window after
Uber’s entry date is denoted “+1”. Each point estimate shows the effect of Uber’s entry on the relevant weekday traffic outcome of interest.
The control group is never-treated counties and periods more than 450 days prior to Uber’s entry date or 360 days after Uber’s entry date. The
horizontal line represents 0 and the dashed vertical line represents Uber’s entry date (or t=0).
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Figure 2: Permutation test for Traffic outcomes.
Notes: Each figure presents a histogram of the distribution of coefficients from 999 separate regressions, with the respective traffic outcome as
the dependent variable. Each regression involves randomly permuting the date of Uber’s entry at counties it entered and running the main
regression specification. The null hypothesis for each outcome is that the coefficient estimated in the main regression (represented by the red
vertical line) is obtained purely by chance (i.e. it is zero). The p-value for this hypothesis test, which is the proportion of (absolute value of)
permuted coefficients larger than that estimated with the actual Uber entry date, is provided in the text in each figure.
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Figure 3: Uber’s effects on Traffic: Sensitivity to outliers.

Notes: Figure shows coefficient on Uber and 95% confidence intervals from difference-in-differences specification from eq. (1) for the
following sub-samples: the top and bottom 1% of observations are winsorized (in blue) or trimmed (red); only counties eventually treated are
included in the sample (i.e. never-treated counties are excluded) (green, short-dash); and “outliers” in the dependent variables, identified using

Cook’s distance, are excluded (orange, dashed). The “Main Specification” (light blue, dash-dot) refers to our preferred specification from
Table 3 and is provided for reference. The red horizontal line represents the zero effect.
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Figure 4: Intra-day effects of Uber on traffic outcomes
Notes: Figures show effects across different time periods in a given weekday for the relevant traffic outcome. Each point represents the total
effect of Uber on a respective outcome for the respective time period, with the bars representing 95% confidence intervals. The four periods
presented are: the “AM peak” (i.e. morning rush hour), 7:00-9:59am; “Afternoon” period, 10am-1:59pm; “PM peak”, represents evening rush
hour, and consists of the hours between 2pm and 7:59pm; and “Night’time, 8:00-10:59pm. “late night”, 11pm-6:59am, is not shown. These
estimates are based on an alternative specification of eq. (1), with the treatment variable, Uber interacted with an indicator variable for each
time period. The coefficients represent the total effect of Uber’s entry during this time period (i.e., a sum of the interaction and main effect for
each time period) after adjusting standard errors. All regressions include socioeconomic variables; see notes to table 3 for further details.

45



™ A <
Lr’. | %
N [V
o~ 4
£ go
210 @
£ =
8 g
o o
— 4
bR {
0 4 '
o ©O |
N > &) &) N N &) &)
o o ¢ ¢
(-90 \(-OO &OQ \'&OQ %O \'90 &OQ éOQ
< < ® 3
(a) Travel efficiency (VMT/VHT) (b) Vehicle delay per capita (vehicle seconds)
[ee)
3
©
3 A
ﬂ
o<
SO T
g
1]
8
N l
) l
(=) T +
X N ‘ 5
i i
o & & <&
Q O
< <

(¢) VMT per capita

Figure 5: Heterogeneous effects of Uber on Traffic outcomes across California’s counties.
Notes: Figure shows effects across two different categorizations of California’s counties for the three traffic outcomes. Each point represents
the total effect of Uber on an outcome for the respective category, with the bars representing 95% confidence intervals. For each of the two
categorizations, results pertain to a modification of the main specification in eq. (1) that includes an interaction term between the treatment
indicator, Uber, and an indicator variable for the categorization (see text for further details). On the left side of each figure, we present the
effect of Uber on counties lying within Southern California (“SoCal”), which includes Orange County, Riverside County, Los Angeles
County, San Diego County, Santa Barbara County, San Luis Obispo County, San Bernardino County, or Ventura County, and those lying
outside (“Not SoCal”); on the right side, we present the effect of Uber’s entry on the five most populated counties (“Top 5”), which includes
Los Angeles, San Diego, Orange, Riverside and San Bernardino, and the remaining counties in California (“Not Top 5”). All regressions
include socioeconomic variables’ see notes for Table 3 for further details.
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Figure 6: Heterogeneous pollution effects: Southern California
Notes: Figures represent effects of Uber’s entry (along with 95% confidence intervals) on counties within southern California (“SoCal”) and
outside of southern California (“Not SoCal”). Definition of counties within Southern California and computation of the effects of Uber on
counties are in the notes for Figure 5. All regressions include socio-economic variables; see notes to Table 7 for details. “FE”, “LDV”” and
“Week” represent respectively specifications: with county fixed effects (FEs) (eq. (3)); without county FEs but with a lagged pollutant
concentration (eq. (4)); and weekly average pollution concentration and county FEs.
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Figure 7: Heterogeneous pollution effects: Top 5 counties
Notes: Figures represent effects of Uber’s entry (along with 95% confidence intervals) within the top 5 most populated counties (“Top5”) and
outside (“Not Top5”) (see notes for Figure 5 for more information). All regressions include socioeconomic variables; see notes to Table 7 for
details. “FE”, “LDV” and “Weekly” represent respectively specifications: with county fixed effects (FEs) (eq. (3)); without county FEs but
with a lagged pollutant concentration (eq. (4)); and weekly average pollution concentration and county FEs.
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Appendix A Online Appendix (Not for Publication)

Subsection A.1 Public Transit and Automobile Ownership Data

We obtain information on public transit ridership using data from the National Transit Database,
which has information on unlinked passenger trips (UPT) for different modes of public transit
in various cities and counties at the month-year level. Data from the FTA’s NTD are based on
an “urbanized area”. For public transit systems spanning multiple counties, UPT was assigned
to the most populated county among those served to avoid double counting. This was done
for three urbanized areas. The Los Angeles-Long Beach-Anaheim urbanized area was counted
as Los Angeles County, which means Long Beach County was dropped from the sample.
Additionally, Anaheim is in Orange County, however, Orange County was not dropped from
the sample because there is another urbanized area in Orange County (i.e., Mission Viejo-Lake
Forest-San Clemente). The Riverside-San Bernardino urbanized area was counted as Riverside
County, and another urbanized area located in San Bernardino (i.e., Victorville-Hesperia) was
used to represent the county. The San Francisco-Oakland urbanized area was replaced with
Alameda County and San Francisco County was dropped. In an alternative specification, the
public transit system is represented by San Francisco County instead of Alameda County and the
results are very similar (available upon request). Other counties that did not include urbanized
areas that reported to the NTD were dropped from our study, which includes El Dorado, Madera,
Marin, Mariposa, Nevada, Placer, San Benito, San Francisco, San Mateo, Tulare, Tuolumne,

and Yuba, most of which are smaller counties.

Subsection A.2 Additional Summary Statistics

By time-period: Summary statistics for the outcomes of interest separated by the AM peak
(7am to 9:59am), afternoon (10am to 1:59pm), PM peak (2pm to 7:59pm) and finally
by nighttime (8pm to 11:59pm) are in Table Al. They show that delay per capita
is consistently greater during the AM and PM peak period, almost twice that of the
afternoon or nighttime. Travel efficiency is also lower, though the difference is not as

great while VMT per capita is of similar magnitude during the AM and PM peak periods
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as in the afternoon, though much lower at nighttime.

Inter-regional variation in traffic outcomes: The heterogeneity and variation across counties
in traffic outcomes is presented visually in Figure A1 and Figure A2 for vehicle delay
and VMT (resp.) during the morning (7 to 9:59am) and evening (2 to 7:59pm) rush hour
(panels A and B resp.). Each circle represents average vehicle delay or VMT over the
study period in a given county, with the size of the circle representing magnitude. The
blue and orange counties are treated and never treated counties (resp.). As surmised, the
more populated counties (including Los Angeles, Orange, San Diego, and a few counties
in the Bay Area near San Francisco) tend to experience worse vehicle delay, while VMT

per capita is a function of many characteristics including population size.

Transit: As a reference point, average UPT per capita during the study period and for relevant
counties is approximately 2 with a standard deviation of 4.7. Treated counties have a
mean of 1.3 while untreated counties have a (statistically significantly) larger mean of
3.84. There is also evidence of statistically significant increase in UPT per capita in

treated counties before (at 1.19) and after (at 1.56) treatment (see Table A3.

Further, high UPT counties (as evident from table A3) in general have higher congestion
levels, are significantly more densely populated and have higher levels of economic
activity (not shown) and of automobile ownership. They are however not more likely to
have rail-based transit, however, meaning that the High UPT-based classification differs

from the rail-transit-based classification.

Automobile registration: We note that counties with “high ownership” differ from those with-
out along expected dimensions: having significantly lower UPT, fewer counties entered
by Uber, slightly lower delay, similar population densities, but with significantly lower

median income (see table A3).
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Subsection A.3 Further details regarding the Transit and Automobile

registration regressions

Transit: We note that in light of previous studies reporting a relationship between Uber’s
entry and transit usage, congestion and transit usage are likely both affected by Uber.
Consequently, a specification of the form of eq. (1) with transit usage as a control variable
potentially suffers from an endogeneity problem. Nonetheless, using UPT as a control
variable in our main regression (eq. (1)) yielded estimates of the effects of Uber that
were almost identical to those of our main specification, with the only difference being a
smaller (but still significant) increase in travel efficiency (see Panel C of Table 6). We also
note that it is highly unlikely that the entry of Uber influenced whether a county moved
from being a low UPT per-capita to a high UPT-per-capita (or vice-versa) category over
the short time period under consideration, as evidenced by the largely static UPT shares
over the sample period (as evident from an inspection of the average UPT over time—not

presented).

We also note that the overlap between counties in Southern California and the five most
populated counties and the counties included in transit-related analysis is essentially only
L.A and San Diego. These are the only counties in Southern California that Uber entered

and has either rail transit or is a “high UPT” county.

Finally, we also note that the qualitative insights of our findings in section 4.1 are robust to
using an alternative definition of “high” and “medium” UPT counties (using the third and
second terciles), using only “high UPT counties”, or categorising counties into “above”

and “below” median UPT per capita. These results are available upon request.

Automobile Ownership: As for the case of transit, using a simpler classification of counties
into those with above- and below-average (per capita) ownership (based upon pre-2013
data) or into those with high ownership and those without (i.e. using only a “high

ownership” indicator), yielded similar qualitative findings (results available upon request).

We note that in view of previous findings that vehicle registrations are affected by Uber’s

entry, its use as a dependent variable in a regression of the effects of Uber on traffic
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patterns can suffer from endogeneity. The approach we follow, of categorising counties
by pre-entry registration average, provides a way of avoiding these endogeneity-related

challenges.

Subsection A.4 Definition of Traffic Outcomes

PEMS defines the three traffic outcomes we use as follows:

L L
Vehicle Hours of Delay (VHD): is computed as F' x <V — V) where F'is flow, L is length
t
of segment, V' is the speed of travel and V; is the threshold speed (PeMS, 2009). It is
calculated as the VHT at the speed of travel minus the VHT at the threshold speed (taken

here to mean the typical freeway speed of 60 m.p.h). To enhance readability, we multiply

VHD by 3600 seconds so it is now measured in seconds.

Vehicle Hours of Travel (VHT): is the total amount of time spent by all vehicles over a freeway
segement during a certain time period (Caltrans 2020). At the aggregate level, it is the
sum of VHT from individual detectors, so at the county-level, it is the sum of VHT across

individual detectors in a given county.

Vehicle Miles Travelled (VMT): is calculated in PeMS by multiplying the number of cars that
drove over a detector in a given period (i.e., flow) by the segment length. It does this for

each detector in a given county and then sums the miles to obtain total VMT.

Subsection A.5 Data-related Challenges

Transit data: We note that traffic outcome data are not available for all counties in California:
of the 58 counties, data are available for 37 in 2015 and 31 in 2009 (data are largely
missing for the more sparsely populated counties). Figure A1 shows a map of counties
with average vehicle delay during different time periods in our study over the sample
period (2009-2015), where colored counties represent those with data available. Counties
colored blue are treated (i.e., counties Uber eventually entered) while those colored orange

are never-treated counties (i.e., counties Uber did not enter during our study period).
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Pollutant data: As for traffic outcomes, not every county collects (or is required to collect)
air quality data, though the most populated counties typically do. Further, the number of
counties with data varies over time since pollutant concentration data were not recorded
for all counties and years. The number of observations for each pollutant varies since
the number of counties monitoring each pollutant depends partly on whether a county
falls within an EPA-notified “non-attiainment” area (see https://www3.epa.gov/airquality/
greenbook/ancl.html for further details). Most commonly, certain counties either do not
monitor certain pollutants at all (particularly true for CO) or begin monitoring post-2009
(or to a lesser extent end monitoring pre-2015), as illustrated for the regression sample in
Table A5. We also note that counties with missing data are usually sparsely populated,
so (traffic and) pollution are less of a major concern. Finally, we note that using stricter
criterion for data availability (e.g. retaining only counties that are monitored in 2009,
2012, and in 2015) does not lead to discernible changes of our estimates of the effects of

Uber on pollution (results available upon request).

Weather Data: Wind speed is also arguably an important factor in understanding pollution
concentrations (and, to a lesser extent, traffic). However, since average wind speed is not
available at > 90% of weather stations in California, we do not include it in our analysis.
We also note that for one county, Sutter County, unavailability of consistent weather data

led us to use data from the adjacent county of Yuba.

ACS Data: Some counties, specifically Amador, Calaveras, Colusa, Del Norte, Glenn, Inyo,
Mariposa, Plumas, San Benito, Siskiyou, Tehama, Trinity and Tuolumne did not have
information available in the 1-year American Community Survey, in which case, we used
data from the 5-year ACS, where data from the 2009-2013 5-year ACS represented the
years 2009 to 2012 and data from the 2013 to 2015 5-year ACS represented 2013 to 2017.

Finally, we point out that data on automobile registration are available for many more
counties (36) than data for UPT (25). Consequently, despite the significant overlap
between “low” automobile ownership and high UPT counties, the differences in overall

sample ensure that our findings regarding transit usage and vehicle ownership provide
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complementary perspectives.

Subsection A.6 Robustness checks for pollutant concentration

We carry out a series of robustness and specification checks to ensure the validity of our findings
related to pollutant concentrations. First, we evaluate whether our findings are influenced by the
degree to which our control (“never treated”) counties represent valid controls, by restricting
attention to only the treated counties (meaning identification is now entirely a result of the
differential timing of Uber’s entry). The results of this specification are summarised in Figure A4
(“Only Treated Counties” represented by the dashed orange line on the right of each graph),
where the horizontal red line represents zero. As is evident, the only change from the main
specification (the dashed light blue line on the far right) is for O3, which now shows a statistically
significant reduction in treated counties. In other words, after Uber’s entry into a county, Og
concentration falls by about 1 ppb, or 2% of the pre-2013 mean in treated counties, relative to
counties yet to be treated.

Next in Figure A4, we evaluate the degree to which outliers in the dependent variables affect
our results, for which we use our main specification but deal with outliers in the following two
ways: one, either winsorize (the solid blue line on the far left of each graph) or trim the top and
bottom 1% of observations of the dependent variable (the solid red line on the left), and two,
expunging outliers identified using standard metrics (e.g. Cook’s distance) (the dashed green
line in the center). The coefficient on Uber with these samples are provided in Figure A4. For
PM2.5, the only change we see is that in the trimmed and outlier-expunged samples (that lose a
fraction of the sample), the effect of PM2.5 shrinks by a third and turns insignificant. As already
mentioned, estimates from the “treated only” sample are almost identical to those of the main
specification. Overall, outliers do not significantly affect our estimate of Uber on county-level
pollution outcomes.

As for traffic congestion, we also check to ensure that specific treatment groups or treatment
times are not a key driver of our results. To this end, we carry out a permutation test by randomly
assigning treatment dates to treated counties with a view to ensuring that the magnitude of our

Uber effects (regression coeflicients) are large enough to rule out their being largely a result
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of a chance realisation of treatment time. Figure AS plots the results of this test, together
with the distribution of these coefficients and the coeflicient estimated for the actual treatment
date and a p-value for the null. The fact that we can reject this null for all pollutants clearly
suggests that the size of the effects of Uber we find for all pollutants, in particular for PM2.5,
are too large to arise by chance. Similarly, we also evaluate whether the first or last few counties
entered overwhelmingly differed from the remaining and drive our results. We do so by re-
estimating equations 3 and 4 where we exclude the first three and final four counties entered.
The results of these specifications, presented in Table A4, are almost identical to those of our
main specification, suggesting that changes in pollution outcomes did not drive the order of
Uber’s entry into a county.

Similar to the case of traffic congestion, we also check to ensure that specific treatment groups
or treatment times are not a key driver of our results. To this end, we carry out a permutation
test by randomly assigning treatment dates to treated counties with a view to ensuring that the
magnitude of our Uber effects (regression coeflicients) are large enough to rule out their being
largely a result of a chance realisation of treatment time. Figure A5 plots the results of this test,
together with the distribution of these coefficients and the coefficient estimated for the actual
treatment date and a p-value for the null. The fact that we can reject this null for all pollutants
clearly suggests that the size of the effects of Uber we find for all pollutants, in particular for
PM2.5, are too large to arise by chance.

Similarly, we also evaluate whether the first or last few counties entered overwhelmingly
differed from the remaining and drive our results. We do so by re-estimating equations 3
and 4 where we exclude the first three and final four counties entered. The results of these
specifications, presented in Table A4, are almost identical to those of our main specification,
suggesting that changes in pollution outcomes did not drive the order of Uber’s entry into a

county.
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Subsection A.7 Figures
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Figure A3: Falsification test: County characteristics before- and after-Uber entry.

Notes: Figure shows coefficient on Uber and (90%) confidence intervals from event study regressions of county characteristics before and
after Uber’s entry. All specification-related details are as for prior event studies (see fig. 1). Panel (a) shows higher education (share of county
population with above higher secondary education), Panel (b) shows county median income while Panel (c) shows county population density

(population divided by sq. miles).
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Figure A4: Sensitivity of Uber entry effects on Pollution to outliers.
Notes: Figure shows coefficient on Uber and (95%) confidence intervals from diftference-in-differences specification for daily pollution
concentrations from the county FE specification in eq. (3) for the different sub-samples (detailed in Figure 3).
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Figure AS: Permutation test for daily Pollution outcomes.
Notes: Each figure presents the distribution of coefficients from 999 separate regressions (our main specification with county FE, from
eq. (3)), with respective daily pollutant concentrations as the outcome. All other aspects are identical to those detailed in fig. 2.
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Table A3: Key sample characteristics by Transit and Automobile ownership

Panel A: By unlinked passenger trips (UPT) category

High UPT Not high UPT
Untreated  Treated  Untreated — Treated
UPT per capita 23 2.83 0.69 0.68
Vehicle Delay (seconds per capita) 4.74 2.7 1.6 1.16
VMT (per capita) 0.50 0.35 0.41 0.27
Travel efficiency (mph) 60.23 60.52 63 63
Population density ~ 2168.5 1381.2 519 578.2
Median Income  78305.22 68280.23 62485.14 57866.46
Number of counties with rail transit 1 2 2 2
Number of counties 1 5 6 13
Automobile registration (per capita) 0.625 0.612 0.572 0.56
Panel B: By auto ownership category
High Car Not high Car
Untreated  Treated  Untreated  Treated
Auto ownership (per capita) 0.70 0.65 0.54 0.54
UPT per capita 0.46 0.78 4.45 1.52
Vehicle delay (seconds per capita) 1.76 1.34 1.38 2.30
VMT (per capita) 0.39 0.25 0.28 0.40
Travel efficiency 60.72 61.98 60.18 62.36
Population Density ~ 624.33 1978.35 377.32 1360.73
Median Income 59771.88 56906.39 72111.41 77041.69
Number of counties 8 5 9 14

Notes: “High UPT” and “Not high UPT” represent counties with pre-2013 average UPT per capita > and <
the 75th percentile (resp.). “High car” and “Not high car” represent counties with pre-2013 average county
automobile ownership per capita > and < the 66th percentile (resp.) (i) Total number of counties with non-
missing UPT data for years 2009-2012 is 25. Note that most mean differences across treated and untreated
(e.g. auto registration) are significant at the 1% level. (ii) Of the 25 counties for which we have UPT data,
the following six are high UPT counties: LA, Sacramento, San Diego, Santa Barbara, Santa Clara (Treated)
and Alameda (untreated). (iii) Of the eight counties that are in the High car category, only one (Santa Clara)
is in the High UPT category (and only three more are included in the sample with UPT data).

65



*(*dsax) suoneoyroads

((#) ‘ba) AQ'T pue ((¢) ‘ba) g4 AHunod 2y Sulsn $INSII MOYS SUWN[OD PAIAUINU-UIAL Pue -ppO (g [dued) 18] K194 10 (Y [ouRd) A[TEd
KI9A PAIRIUL 124 () JBY) SANUNOD pN[ox3 0} djdwres ay) SunoLIsal ur Auo / J[qe) ul Jey) Woij SULIPYIP uoneoyroads & wolf sjnsal uols
-sa1301 sjuasard 9[qe], "[OAQ] JeaA-AJUNO0D AU Je PAIASN[O Pue S}aYorIq Ul It S10110 prepuelS ‘1°0>d 4 ‘60°0>d wx ‘T10°0>d wxx:SAON

SHA ON SAX ON SHX ON SHA ON  9[qerrea juapuddop jo SeT (Kep-1)
ON SHX ON SHX ON SHA ON SHA 3992 paxy Ljuno)
$91 91 LOE LOE 10T 10T €€T €eT SI9ISN[D JO JoquInN
9L'0  ¥LS0 €I80 €890 6L0 T690 S650  98T0 (|
ISE6E  1SE6E 6EITL 6EITL HO6'LY +06'LYy 9ET'SY  9€T'SP N

[8o+v1 [ovil [erol [wpol [erol  [seol [erol  [6S0]
4 9SS €200 9800- TEO0 620 910~ x00'1- qn
PAJ13)Ud SIANUNOI INOJ [BUly Y} SUIPNPXY : [Pued
0S1 0S1 vI¢ v1¢ 80¢ 80¢ €€T €eT SI9ISN[D JO IoqUInN
GSL'0 8550  +I80  ¥89°0 6LL0 990 S650  TSTO [
GG8'GE  GG8'GE  0LB'EL 0L8'CL 68S'6Y 6856y 6SLEy 6SL'EY N

[vev] [oc1]l [erol [erol [orol [ecol [zrol  [8S0]
9C0- T6'9 T80'0- LTO-  LO0O I€0°0 %CTO-  #x0CT'I- Iqn
PAI9)UR SINUNOI JRIY) )SIY SUIPNPXY 1V [Pued

(o) 0D 0 ‘0 ‘'ON °ON GSTINd STINd

8 L 9 S 12 ¢ 4 I

sanunod jo dydures pajdL)sdy :uonnod J0J SYIIYD SSIUWISNQoyY 4V IqeL

66



“(V [oued)
L 9[qeL Ul 9soy} 0} s}[nsal ([ed11uapl jou jI) Je[uuis A[eAnelenb pop[alf suoneoyroads
uoIssaI3a1 (4 A1unod) [V "S10Z 10 210T ‘600T JO Aue 10§ eep 3ulssiu pue ‘A[uo 600
J10J Byep SUISSIW SANUNOD SUIpn[oxd 0} ‘(. uoneoyroads urew,,) sONUNOd Jo o[dwes aInud
oy Sursn woly SurSuer ‘saNUNOD JOJ BLISILID UOISN[OXS UI IQJJIP SUoneoyroads uorssaigoy
Jueinyjod £q suoneoyroads UOISSITOI JURISHIP U POPN[OUL SANUNOD JO IOQqUINN] SIION

144 ¢ 9¢ 0
87 174 1% €O
Ie 143 33 ¢ON
6¢ 6¢ (44 CCNd

10T 10 T10T 10 600T STedk  600T 12k
J0J BIep SUISSIW SANUNOJ JUIPN[IXH uoneoyroads urey

€ (4 I

SUONeIYId3ds uoIssaagax
JUIIJIP J0J SANUNOD SSOIIE AJI[IqR[IBAR B)ep jueIn[jod SV dqel,

67



Table A6: Pre-2013 and Post-2012 means for traffic outcomes

1 2
Pre-2013 Post-2012

Panel A: Travel efficiency (VMT/VHT) (mph)

Overall 63 60
Treated counties 63 62
Southern California 62 62
Never treated counties 63 57
Outside Southern California 63 59
Top 5 most populated counties 62 61
Outside Top 5 most populated counties 63 59
AM peak 61 57
Afternoon 62 59
PM peak 61 57
Nighttime 66 63
Panel B: Delay if ideal speed is 60 mph (vehicle seconds) per capita
Overall 1.3 1.9
Treated counties 1.5 1.7
Never treated counties 1.2 2.0
Southern California 2.2 2.6
Outside Southern California 1.1 1.8
Top 5 most populated counties 2.5 3.6
Outside Top 5 most populated counties 1.1 1.7
AM peak 2.6 34
Afternoon 1.3 1.7
PM peak 2.8 39
Nighttime 0.2 0.4
Panel C: VMT (miles) per capita

Overall 0.3 0.3
Treated counties 0.3 0.3
Never treated counties 0.3 0.3
Southern California 0.4 0.4
Outside Southern California 0.3 0.3
Top 5 most populated counties 0.4 0.6
Outside Top 5 most populated counties 0.3 0.3
AM peak 0.4 0.4
Afternoon 0.4 0.4
PM peak 0.4 0.5
Nighttime 0.2 0.2

Notes: Table shows pre-2013 and post-2012 means (columns 1 and 2 resp.) for the traffic
outcomes of interest, where “pre-2013” includes all years prior to 2013 (i.e. 2009-2012)
and “post-2012” includes all years after 2012 (i.e. 2013-2015). This includes means
overall (across all counties in the sample), in treated counties only, never treated coun-
ties, and across different regions and time bands of interest to this study. See notes from
Table 2 for more information.
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Table A7: Pre-2013 and Post-2012 means for pollution outcomes

1 2

Pre-2013  Post-2012
Panel A: PM2.5 (ug/m3)
Overall 10.2 9.7
Treated counties 10.0 9.4
Never treated counties 10.4 10.0
Southern California 10.3 9.4
Outside Southern California 10.5 9.3
Top 5 most populated counties 11.0 10.3
Outside Top 5 most populated counties 10.3 9.2
Panel B: NO; (parts per billion (ppb))
Overall 10.6 9.9
Treated counties 11.4 10.5
Never treated counties 9.7 9.2
Southern California 124 10.1
Outside Southern California 10.1 9.1
Top 5 most populated counties 16.3 14.5
Outside Top 5 most populated counties 9.7 8.7
Panel C: O; (ppb)
Overall 28.4 30.8
Treated counties 28.3 30.7
Never treated counties 28.5 30.9
Southern California 29.8 329
Outside Southern California 27.9 30.8
Top 5 most populated counties 29.8 33.6
Outside Top 5 most populated counties 28.0 30.8
Panel D: CO (ppb)
Overall 361.5 343.6
Treated counties 350.4 3344
Never treated counties 379.4 358.5
Southern California 361.3 328.6
Outside Southern California 365.6 341.3
Top 5 most populated counties 396.3 354.1

Outside Top 5 most populated counties ~ 356.0 334.2

Notes: Table shows pre-2013 and post-2012 means (columns 1 and 2 resp.) for
the pollutants of interest. See notes for Table A6 for more information.
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Table A8: Welfare implications of Uber’s entry on freeway congestion in California

Estimates ‘ Annual welfare effects (US$ millions)
Average effect 14.3
Heterogeneous effects
Over time
Afternoon (10 am-1:59 pm) 17.1
PM peak period (2-7:59 pm) -42.8
Nighttime (8-10:59 pm) 13.6
Net effect -12.1
Across county groupings
In Southern California -11.0
Outside Southern California 9.9
Net effect -1.1
At Five most populated counties -11.2
Outside five most populated counties 8.6
Net effect -2.6

Notes: Table presents results from the back-of-the-envelope welfare computations discussed in sec-
tion 6, using estimated effects of Uber’s entry on freeway congestion in California (between 2009 and
2015). The “Average effect” is based on estimates in Table 3, while the heterogeneous effects “over
time” and “across county groupings” are based on estimates from Figure 4b and Figure 5 (resp.). The
“Net effect” in bold is the direct sum of the annual welfare effects during these different time periods
or across different regions.
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