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Abstract 

Will reducing traffic congestion bring health benefits? We use high frequency data from Uber for Delhi – 

a city that experiences high levels of air pollution and traffic congestion - to answer this question. Exploiting 

information by time of day for every day of 2018 at the neighborhood level that covers over 16000 possible 

trips during each of these time periods, we employ an econometric framework that models wind direction 

together with day, month, time-of-day and trip fixed effects to remove important sources of unobserved 

heterogeneity. Congestion has a non-linear, dynamic impact on pollution raising it sharply by over a 

standard deviation. The pattern of response shown by the results is consistent with known information 

regarding vehicular emissions and ambient air pollution, suggesting bias in the estimates to be low. 

Simulations using parameters from epidemiological studies suggest congestion may be responsible for up 

to 40% of all premature deaths from pulmonary and heart disease in Delhi. 
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Section I: Introduction 

Traffic congestion imposes significant costs on society: Longer commutes waste time as 

people are forced to spend their hours on the road. Engines idle for longer at major road 

intersections with adverse effects on air-pollution and human health (Currie and Walker 2011; 

Knittel et al 2016; Barth and Boriboonsomsin 2008). According to the World Health 

Organization, 9 of the top 10 most polluted cities in 2016 are in India.1 Three of the top 10 most 

congested cities in the world are also in India – Hyderabad, Delhi and Mumbai (Numbeo Traffic 

Index 2019). Private and public forms of transport contribute about 10% to 12% of the 

emissions of nitrogen oxides and non-methane volatile organic compounds in 2015 in India 

(Venkatraman et al 2018). At the same time, private ownership of cars in India is projected to 

increase: more than 85% of respondents in four major metropolitan Indian cities – Bangalore, 

Delhi, Hyderabad and Mumbai - plan to buy a car in the next five years (Boston Consulting 

Group 2018). 

Yet, there is little rigorous analysis of the effects of traffic congestion in developing 

countries such as India: Chen et al (2020) which studies this relationship in Beijing is an 

important exception. Indian cities are not just congested and polluted they are also densely 

populated implying exposure to pollution is also amongst the highest in the world. Health costs 

from pollution exposure are thus large but it is unclear how much can be attributed to vehicular 

congestion. Indeed, recent epidemiological research indicates that the mortality-exposure 

relationship appears nonlinear and thus flatter at high levels of pollution (Pope et al 2011, 

Burnett et al 2018): mild reductions in pollution at high-pollution levels are thus unlikely to 

bring about substantial health gains.  

We attempt to fill this gap by analyzing the effect of vehicular congestion on air pollution 

and health outcomes in the city of Delhi in India. Our measure of traffic congestion comes from 

an extremely high frequency dataset collected by Uber, the rideshare company. The data spans 

the year of 2018, with information on travel times collected by time of day for every day, at the 

level of local neighborhoods called wards. We define congestion as the amount of time 

required to go from point A to point B, normalized by distance. This is the inverse of speed 

 
1 https://www.who.int/airpollution/data/cities-2016/en/ 
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(minutes per kilometer) and is a well-known measure of traffic flow (Mangrum and Molnar 

2018). Our main outcome variable is PM 2.5 concentration, but we also look at PM 10, CO and 

NOx.  

Using these different pollutants as outcomes helps us in identification. CO and particularly 

NOx are well-known precursors to particulate matter formation and are the main pollutants 

emitted by vehicles (Hodan and Barnard 2004). Therefore, if we find congestion has 

contemporaneous impacts on NOx and CO, but lagged impacts on PM 2.5, it will mean our 

estimates arise from vehicular congestion and not any other source. For example, in Delhi, the 

other major source of air pollution is construction. There is no logical reason to believe 

construction will affect NOx levels contemporaneously and PM 2.5 levels with a lag.  

Our estimates imply congestion increases air pollution, in a complex manner. The impact is 

non-linear, congestion must build up before it has a large impact. Crucially, it is also dynamic: 

heavy congestion raises concentrations of CO and NOx immediately, but PM 2.5 concentrations 

only after a few hours have passed. Such a response is sensible if NOx emissions (for instance) 

re-combine in the atmosphere to form particulate matter, as this set of reactions take time to 

occur. At the same time, wind will blow these emissions so the areas where the emissions take 

place and where they are ultimately deposited as particulates will be different, which will be 

indicated by the direction of wind (Hodan and Barnard 2004). Using a rich set of fixed effects 

and incorporating the effects of wind, we are thus confident our OLS specifications reject the 

null hypothesis of zero impact of traffic congestion on pollution.  

Congestion – defined in terms of travel times beyond the 75th percentile – raises PM 2.5 

concentrations by 20 micrograms/m3. Simulations using epidemiological research suggest this 

impact contributes to annual premature deaths from chronic obstructive pulmonary disease 

and ischemic heart disease in Delhi by 19%. 

To the best of our knowledge, this is the first study that looks at the impact of traffic 

congestion on air pollution and health in India. These estimates can be used by policymakers to 

assess policies that aim to relieve vehicular congestion. Our estimates suggest a potentially 

important role for policies such as congestion pricing that could reduce the occurrence of 

extreme congestion events.  
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In the next section (Section II) we describe briefly the institutional and policy background 

to tackling vehicular emissions in India. We then specify our econometric model and identifying 

strategy in Section III. Section IV describes our key variables, and how the data were put 

together. Main results are then shown in Section V and the health implications are discussed in 

Section VI. Section VII discusses the possible threats to identification considering our study 

design; in particular, what may plausibly confound our estimated relationship between 

congestion and pollution. Section VIII offers some preliminary conclusions.  

Section II: Emissions from Transport in India  

Policies aimed at cutting emissions from the transportation sector in India are increasingly 

becoming more aggressive. For example, the Delhi government introduced a quantity-based 

regulation of vehicular emissions through its “Odd-Even” program in a pilot from January 1 to 

15, 2016. Under this program, cars whose license plates ended in an odd number could be used 

on odd numbered days, and similarly for license plates ending in an even number. This program 

has been periodically re-introduced and was last reintroduced  from November 4th, 2019 to 

November 15th, 2019.2 The Ministry of Petroleum and Natural Gas has brought forward the 

implementation of stricter fuel standards (Bharat Stage VI standards) by two years for the 

National Capital Territory: these standards were in effect from April 1st, 2018, whereas earlier 

they were to go into effect by April 1st, 2020.3  These norms are in line with European Union 

regulations on most classes of vehicles and represent a significant tightening of existing norms 

in India.  

Such policies may be well intentioned, but it is unclear to what extent they are justified. 

While there is little doubt about the toxic levels of pollutants in most Indian cities - India is 

home to 14 of the top 15 cities with the worst PM 2.5 pollution out of 100 countries covered by 

WHO from 2011-2016 (WHO 2018) – how far transportation accounts for this is unclear. 

Current estimates of emissions and their sources in India largely focus on national level 

estimates (Guttikunda et al. (2018)). Such estimates typically use an all India geographic scale 

 
2 Greenstone et al (2017) describe various other measures recently adopted by the Delhi government to restrict 
vehicular emissions: increased charges for commercial vehicles, discontinued registration of diesel cars, and 
further restrictions on the entry of trucks.  
3 http://pib.nic.in/newsite/PrintRelease.aspx?relid=173517 
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which is less likely to capture detailed variation in traffic-related exposure within urban areas 

and near roads. Consequently, they are likely to be underestimates. According to the latest GBD 

estimates, the transportation sector accounted for about 2 percent (23,100) of deaths 

attributable to PM 2.5 pollution in India in 2015. Most city level studies on source 

apportionment of air pollution focus on Delhi, the national capital. Guttikunda et al. (2018) is an 

exception, since the authors provide estimates of sector-wise contribution to air pollution by 20 

Indian cities in 2015. The marginal impact of reducing traffic congestion on air pollution, 

however, is not considered by this study.   

Knowledge of the magnitude of the marginal impact of congestion on pollution is crucial 

for understanding the welfare loss associated with emissions from congestion. To see this, first 

consider the effect of congestion. Increasing congestion by itself involves a deadweight loss: 

this is simply a commons problem (Akbar and Duranton 2017). When making the decision to 

drive, drivers should account for their marginal impact on congestion which is the social cost of 

the drive, but instead make their decisions on the average impact which is the private cost. This 

leads to too much driving, with the extent of the deadweight loss given by the distance 

between the social and private cost curves.  

But there is another source of divergence between social and private cost, the effect of 

emissions produced as a result of driving. Congestion due to driving may increase emissions, 

which raise ambient pollution concentrations, which in turn have adverse effects on health. 

Therefore, the deadweight loss associated with a given privately optimal level of driving will be 

larger than that due to congestion alone. An estimate of congestion’s impact on pollution will 

tell us how large this additional loss would be, conditional on the effect of pollution on health. 

A small estimate would suggest that additional policies to curb vehicular emissions are unlikely 

to lead to sizeable welfare increases while a large estimate would suggest that such policies are 

needed, as long as increased pollution negatively impacts health outcomes. The latter is true 

because Greenstone et al. 2017 have shown that reducing pollution is likely to improve health 

outcomes by a large amount in India. Recent work suggests the deadweight loss from 

congestion itself – the effect of pollution is ignored in these studies - in highly congested cities 

is likely to be small (Kreindler 2018, Akbar and Duranton 2017). Our estimate of the effect of 
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congestion on pollution will therefore inform policy on whether there are any significant 

welfare losses from congestion.  

To the best of our knowledge, the only study that estimates the impact of traffic 

congestion on air pollution is by Knittel et al. (2016). Here the authors’ use hourly data on 

average speed and total flow of cars in California from the Freeway Management and 

Performance System (PeMS) maintained by the University of California, Berkeley Department of 

Electrical Engineering and Computer Sciences.  They estimate the effect of congestion on 

ambient air pollution and infant mortality rates within postcodes in California from 2002-2007. 

The authors’ employ an instrumental variables fixed effect model to estimate the impact of 

congestion on carbon moNOxide (CO) and PM 10. Since pollution in a neighborhood can be 

correlated with the unobservables that influence the level of infant mortality in a 

neighborhood, the authors’ instrument for pollution using a measure of car miles travelled 

interacted with weather variables. They find that a standard deviation increase in traffic results 

in a 0.2% of a standard deviation increase in infant deaths. However, they do not account for 

wind, nor do they consider the impact on PM 2.5, the most harmful by-product of vehicle 

emissions. Finally, infant deaths are only a short-run measure while we look at long term 

impacts which are arguably more relevant for policy.  

Currie and Walker (2011) estimate the health effects of traffic congestion by examining the 

effect of a policy change that caused a sharp decline in congestion across places in the United 

States. Examining US cities, Duranton and Turner (2011) find that vehicle-kilometers travelled 

increases with roadway lane kilometers, with public transportation having little effect. In a 

similar vein, Mangrum and Molnar (2018) find increased supply of taxis worsened congestion in 

New York City. Contrary to these results, Anderson (2014) estimates an increase in delays, 

measured in minutes per mile, of commutes using private transit when public transport services 

stop in Los Angeles. Exceptions to the studies focused on developed countries are Akbar and 

Duranton (2017) and Kreindler (2018) who study traffic in Bogota and Bangalore respectively 

and find the welfare loss from congestion to be small. Both studies, however, ignore air 

pollution in their estimates of congestion costs. 

Section III: Identifying the Effect of Congestion on Pollution and Health 
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Our main specification is written as: 

𝑝𝑠ℎ𝑑𝑚 = 𝛽0 + 𝛽1 ∗ 𝑑𝑠ℎ𝑑𝑚 + 𝛽2 ∗ 𝑋𝑠ℎ𝑑𝑚 + 𝜆𝑠 + 𝜆ℎ + 𝜆𝑑 + 𝜆𝑚 + 𝜀𝑠ℎ𝑑𝑚                               (1) 

Equation (1) above is our preferred specification. Here, 𝑝𝑠ℎ𝑑𝑚 records the pollution level 

recorded at monitoring station 𝑠, during hour ℎ of day 𝑑 in month 𝑚.4 There are 36 monitoring 

stations in total, which are operated by the Central Pollution Control Board. The congestion 

measure 𝑑𝑠ℎ𝑑𝑚 is calculated as follows. We construct a 90-degree cone using information on 

wind direction for all wards in Delhi. Using this cone, we can draw up a list of which wards are 

upwind for any chosen ward at every point in time. We then identify the specific ward 

containing monitoring station 𝑠, and all the wards upwind of this ward for all points in time. 

Our measure of traffic congestion equals the amount of time trips take. Using the list of 

wards upwind of the ward containing the monitoring station, we calculate the average 

congestion levels for all trips originating from, and ending in, every upwind ward including the 

ward in which monitoring station 𝑠 is located – this average is the congestion measure 𝑑𝑠ℎ𝑑𝑚. 

Trips from or to those wards lying outside the list of upwind wards are excluded from 𝑑𝑠ℎ𝑑𝑚. 

We carry out this exercise for all monitoring stations.  

We split the congestion measure thus calculated in a categorical variable that takes on the 

following values: 1 if travel times are below the 25th percentile, 2 if travel times are between 

the 25th and the 50th percentile; 3 if travel times are between the 50th and the 75th percentile 

terms of percentiles; 4 if travel times are between the 75th and the 95th percentile; and finally 5 

if travel times are above the 95th percentile.  We use this definition to account for potential 

non-linearity in the relationship between pollution and congestion while imposing the least 

possible structure on functional form. Our reasons to use a non-linear specification come from 

two sources. One, we reject a linear relationship5, and two, previous work in Beijing (Chen et al 

2020) also finds a non-linear relationship. The interpretation of such non-linearity is that 

congestion must accumulate beyond a certain point to affect pollution levels.  

 
4 Uber’s data collapses information into 5 hour blocks for every day: Early Morning (12 am – 7 am), AM Peak (7 am 
– 10 am), Midday (10 am – 4 pm), PM Peak (4 pm – 7 pm) and Evening (7 pm – 12 am). 
5 These results are not reported but are available on request. 
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The other control variables - 𝑋𝑠ℎ𝑑𝑚- record weather information (temperature, 

precipitation, humidity and solar radiation) for the wards in which the monitoring stations are 

located .6 Specifying fixed effects at the monitoring station 𝜆𝑠 (or equivalently, at the ward in 

which the monitoring station is located) allows us to eliminate any time invariant characteristic 

of the monitoring station or the ward it is located in - these could be size and location of wards 

or location of monitoring stations. The other set of fixed effects eliminate important sources of 

unobserved heterogeneity with respect to time: hour-of-day, day-of-week, and month. These 

sources will be discussed in the next section.  

Finally, we will compute the health costs associated with increased congestion by 

multiplying the health impacts of increased pollution from existing epidemiological research 

(Pope et al 2011, Burnett et al 2018) with our estimated impact of increased congestion (𝛽1). 

The health outcomes specifically considered are ischemic heart disease and cardiopulmonary 

disease. These studies have been selected to obtain long-run health costs from air pollution 

that are useful for two reasons. One, long-run health impacts are of deeper policy relevance 

than short-run impacts which are typically the focus of many air pollution studies in developing 

countries such as India (Gupta and Spears 2017, Barrows, Garg and Jha 2019). Two, these 

studies draw out the implications for health for various concentrations of pollutant: the 

relationship between health and pollution appears non-linear implying smaller marginal health 

changes for larger pollution levels. Since pollution levels for Delhi are very high, such non-

linearity can potentially play a role in telling us the size of the health impact. 

Section IV: Traffic Congestion, Pollution and Commute Shocks 

In this section we briefly describe the sample we use to estimate our equations. Our 

dataset is assembled from three different sources, described as follows.  

Air Pollution: Data on ambient air pollution concentration comes from 36 monitoring 

stations that are run by the Central Pollution Control Board. These stations record pollution at 

an hourly frequency, for every day. Latitude and longitude information for the monitoring 

 
6 For these variables, we take our data from the Copernicus ERA5-Land dataset which contains gridded data on 
these variables for the city of Delhi. Each grid is of 8 km by 8 km dimension, for a total of 23 grids that overlay the 
city. As wards are irregularly shaped, they don’t fall neatly into these grids, so we assign to each ward the value of 
the meteorological variable from a particular grid based on the ward’s share of area that falls within that particular 
grid.  
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station enables us to locate the station within a ward - the lowest level of civic administration in 

Delhi – for which we have the latitude-longitude of the centroid of the ward. Wards are 

irregularly shaped polygons, so the location of a ward is identified from its centroid position.  

Traffic Congestion: Congestion measures – which we refer to as travel times from here 

onward – are developed using Uber’s public release dataset, which records the length of trips 

between wards. These data are available at five time blocks for every day: Early Morning (12 

am to 7 am), AM Peak (7 am – 10 am), Midday (10 am – 4 pm), PM Peak (4 pm – 7 pm) and 

Evening (7 pm to 12 am).  

Weather: Weather data are taken from the ERA5-Land dataset from Copernicus Climate 

Change Service, which record data again at an hourly frequency for every day; in terms of 

space, each grid is defined to be 9 km in resolution. The centroid of the grid is used to identify 

the weather status for each ward for every hour of every day.  

All three sources are merged using latitude-longitude information and time: hour, day, and 

month. Since the lowest common temporal frequency is given by the Uber defined hour blocks, 

we average all our other data – pollution, and weather – up to these hour blocks to complete 

the merge.  
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Figure 1: Average PM 2.5 Concentrations in Delhi, by hour of day, for 2018 

 

Figure 2: Average Standardized Pollution Concentrations and Travel Times in Delhi, by hour of day, for 2018 

Pollution concentrations and travel times vary significantly within a day. This variation is 

shown in Figures 1 and 2. Figure 1 plots the average PM 2.5 concentrations across all 

monitoring stations by hour of day in purple rectangles. The dotted and dashed black lines 

indicate the Indian national standards for ambient PM 2.5 concentration, while the thick black 

line indicates the tighter US EPA standard for the same. We can see that there is no time during 

the day which meets any of these standards, a potent indication of how badly polluted Delhi’s 
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air is. We also see that pollution is highly correlated with the time of day, as colder times are 

associated with higher pollution – the well-known temperature inversion effect being the 

reason. Similarly, colder months tend to see higher concentrations than warmer months.  

The relationship between travel times and pollutant concentrations is shown in Figure 2. 

Here, we show standardized values to compare all these measures, as they are measured on 

different scales. All pollutants follow the same pattern over the course of a day, falling during 

the middle of the day and rising at night/early morning: precisely how we expect them to 

behave given the influence of temperature. Travel times, however, show a precisely opposite 

trend which is also sensible since most people need to travel during the day.  

Since Figure 2 shows standardized values, the difference between the high and low values 

provides an estimate of how much variance exists. While PM 2.5 varies by roughly 0.6 standard 

deviations, NOx varies the most amongst the pollutants (0.9 standard deviations). Travel times 

vary the most, with the intra-day variation being 1.6 standard deviations. It is important to note 

that these figures are not adjusted for well-known confounders: seasonality over the year, 

within-week variation of travel demand, temperature, rainfall, humidity, and wind direction. 

Some caution should be exercised to avoid taking them too literally. 

To get a sense of the spatial dimension of our data, in Figure 3 we show a heat map of 

travel times for an arbitrarily chosen day-hour combination and location for the city of Delhi: 

the green dot surrounded by black is our marker for an origin ward, arbitrarily chosen. These 

data are taken directly from Uber and form the basis for our main independent variable: 𝑑𝑡ℎ𝑑 in 

equation (3). Deeper blue colours indicate increased travel times and ward boundaries are 

shown by the thin white lines. Note the map will change by changing the location or day-hour 

combination, and thus provides an incredibly detailed look into travel conditions in the city.  
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Figure 3: Heat Map for Travel Times for an arbitrary location and day-hour combination in Delhi (Source: Uber) 

As mentioned in the section above, we only focus on wards upwind of monitoring stations. 

Monitoring station locations are shown in Figure 4 by red dots. We can see that there are many 

monitoring stations that sit at intersections of different wards. The ward whose centroid is 

closest to the monitoring station is recorded as containing the monitoring station. Figures 5 and 

6 show spatial variation in average and standard deviations respectively of PM 2.5 recorded at 

each ward that has a monitoring station, adjusted for weather, hour-of-day, day-of-week, and 

month. In general, wards located in the east and south have both the highest concentration of 

PM 2.5 as well as the largest variation. Note the heat maps in figures 5 and 6 show pollution 

concentrations that cannot be explained by weather, hour-of-day, day-of-week, and month; the 

source of these differences both within and across stations therefore must arise from some 

other factor.  
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Figure 4: Location of Monitoring Stations, shown as red dots. 
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Figure 5: Heat Map of Mean PM 2.5 concentrations, adjusted for weather, hour-of-day, day-of-week and 
month. 
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Figure 6: Heat Map of Standard Deviations of PM 2.5 concentrations, adjusted for weather, hour-of-day, 
day-of-week and month. 

 

Summary statistics for all variables used, including sources used, are shown in Appendix 

Table 4. 

Section V: Estimates of the Pollution-Congestion Relationship 

OLS estimates of equation (1) are shown in Table 1. The first two columns show the 

impacts on NOx and CO, with contemporaneous travel times. The next two columns show PM 

2.5 and PM 10, with lagged travel times. We use the congestion measure 𝑑𝑠ℎ𝑑𝑚– which include 

travel times for trips within all wards upwind of the monitoring station – to define a categorical 
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variable that takes on one of five mutually exclusive values. The base category is whether the 

travel time lies below the 25th percentile, and the other categories are as shown in Table 1.  

The pattern of results highlights very clearly the complexity of the relationship between 

congestion and ambient pollution concentration. Increased congestion leads to higher pollution 

levels, but this impact is driven differently given the percentile range in which congestion falls: 

pollution is therefore non-linear in congestion. Congestion over the 25th percentile, but less 

than the 50th percentile, adds NOx to the ambient air – but note the other coefficients are all 

mostly of the same size, it is only the higher standard error that does not allow us to reject a 

null hypothesis of zero effect of congestion. Similar results show up for CO, except this time the 

impact comes when congestion moves over the 50th percentile. Consistent with the notion of 

emissions mixing in the air to form particulate matter which then drifts downwind after a 

length of time, PM 2.5 concentrations rise with a lag, when travel times go up beyond the 75th 

percentile. PM 10 concentrations are unaffected. NOx emissions indeed are the primary source 

of this pattern of vehicular contribution to PM 2.5 emissions (Hodan and Barnard 2004), lending 

support to the identification of traffic congestion being the source of air pollution in these 

estimates.  

We have examined the robustness of these estimates by running the same specification on 

a sample that excludes all upwind wards except for the ward containing the monitoring station. 

All these results become either statistically insignificant or of illogical sign.7 From this we can 

infer that excluding the influence of wind shuts down the necessary mechanism of atmospheric 

mixing of vehicular emissions produced during high congestion times together with downwind 

drift, required to produce the estimates in Table 1.   

The spatial pattern of PM 2.5 concentration adjusted for weather, hour-of-day, day-of-

week, and month as shown in Figures 5 and 6 suggested heavier concentrations in the east and 

south. The main direction in which wind blows across Delhi is from the north and west to the 

east and south (Sangomla 2018) so this eastern/southern concentration is likely a result of 

wind. Our results are consistent with this spatial spread as well, making us confident that we 

are indeed identifying the impact of congestion.  

 
7 These results are not shown but are available on request.  
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Table 1: Congestion and Pollution: OLS Estimates 

  (1) (2) (3) (4) 

 NOx CO PM 2.5 PM 10 

 Contemporaneous:          

Travel Time between 25th and 3.68** 0.04   

50th percentile (1.40) (0.04)   

Travel Time between 50th and 3.44* 0.10**   

75th percentile (1.85) (0.04)   

Travel Time between 75th and 0.00 0.10*   

95th percentile (2.24) (0.06)   

Travel Time above 95th  3.89 0.13   

percentile (2.72) (0.08)   

2-period Lag:     
Travel Time between 25th and   1.46 -2.16 

50th percentile   (2.10) (4.46) 

Travel Time between 50th and   4.02 -3.69 

75th percentile   (2.70) (5.15) 

Travel Time between 75th and   7.24*** 3.42 

95th percentile   (2.63) (5.38) 

Travel Time above 95th    13.63*** 6.77 

percentile   (3.92) (5.77) 

     

Weather Controls Y Y Y Y 

Trip Fixed Effect Y Y Y Y 

Time of Day Fixed Effect Y Y Y Y 

Day of Week Fixed Effect Y Y Y Y 

Month Fixed Effect Y Y Y Y 

     
Observations 27,538 26,467 23,989 22,104 

R-squared 0.24 0.14 0.43 0.38 

# Monitoring Stations 34 34 34 31 

Outcome Mean 63 1.39 117 241 

Outcome Standard Deviation 69 1.57 101 157 
Standard errors in parentheses, clustered by monitoring station. ** p < 0.05, *** p < 0.01. Weather controls 
include rainfall, temperature, surface radiation and dew point temperature (as a measure of humidity). 
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How do these estimates compare with existing estimates of congestion on ambient 

pollution levels? Knittel, Miller and Sanders (2016) report (in figure 2 of their paper) that 

congestion raises CO concentration by about 0.1 on average, which is equal to what we find 

when congestion rises above the 50th percentile. For PM 10, they find an average effect of 

about 8 (in figure 3 of their paper); our estimates suggest that traffic congestion raises PM10 by 

about 7 once congestion crosses the 95th percentile although it is statistically significant. An 

important difference between our estimates and Knittel, Miller, Sanders (2016) is that we allow 

for a non-linear relationship between pollution and congestion. Chen et al (2020) report on 

page 343: “vehicular emissions within the Fifth Ring Road contribute to 38.8%, 43.4%, 57.1%, 

and 54.1% of PM2.5, PM10, NO2, and CO pollution in Beijing”. Our estimates suggest the 

following percentages for PM 2.5, NOx and CO: 17%, 6% and 7%. We exclude PM 10 since our 

estimates were statistically insignificant.  

Chen et al (2020) also find an inverse relationship between traffic congestion and air 

pollution when these are averaged out at various points during a day, like we show in Figure 2. 

Arguing that this perhaps represents reverse causation – people prefer to travel when pollution 

levels are low – they then use an IV strategy to estimate the impact of congestion.  

In our case, given that it was well known by the public in 2018 that air quality will worsen 

with the coming of winter, due to crop fires upwind necessitated by the sowing of the winter 

crop and thermal inversion induced by colder temperatures, we can test for whether such 

reverse causation might be operational. To do this, we restrict the sample to only the summer 

months. If reverse causation is indeed the reason why we estimate the results we do, then by 

focusing on the summer months when air quality is better, we should find smaller effects. The 

results of such a sample restriction are, however, like the unrestricted sample used for the 

results in Table 1. We can therefore rule out reverse causation as a potential confounder.8 

Section VI: Health Impacts from Reduced Congestion 

We use our estimates in Tables 1 to study their implications for long-run health outcomes, 

relying primarily on the results in Burnett et al (2018). This paper summarizes the exposure-

response relationship for PM 2.5 using data on 15 cohort level studies from across the globe, 

 
8 These results are not shown but are available on request.  



 

 

    19 

 

including one from China, a country that also has high PM2.5 concentrations like India. A 

further advantage of the results in this paper is that it documents the relationship between 

exposure to PM 2.5 and the resulting mortality implications at various levels of exposure with 

minimal assumptions over toxicity per inhaled dose. We can only study the implications of PM 

2.5 reduction and not for the other pollutants. Since PM 2.5 is the deadliest of all air pollutants, 

this is not a major problem.  

Burnett et al (2018) provides a set of estimates for the relative mortality risk from ischemic 

heart disease, and cardiopulmonary disease. Using our estimates on the impact of travel times 

on PM 2.5 concentrations from Table 1, we simulate the impact on mortality from a policy 

aimed at a reduction in the probability of extreme congestion events. To get at the impact of 

congestion on PM 2.5, we add the coefficient on trips with travel times between the 75th and 

95th percentile (7.2) together with the coefficient on trips with travel times above the 95th 

percentile (13.6); doing so implies congestion raises PM 2.5 concentrations by 20 micrograms 

per cubic meter. 

Table 2 shows the resulting implications for mortality risks from chronic obstructive 

pulmonary and ischemic heart disease, showing the premature deaths from congestion. We 

look at these outcomes because Burnett et al (2018) report specifications of the hazard rate for 

populations above the age of 25. The other two major diseases from particulate concentration 

are lung cancer and lower respiratory infections: of these the former is still not very prevalent 

in India while the latter is more of a concern for children.9 The total deaths avoided from 

transportation congestion reductions will then be bounded between the 4 numbers shown, as 

deaths can take place due to complications induced by both diseases or just one of them. 

Because all the point estimates used are bounded away from zero, these mortality reductions 

will also be bounded away from zero. 

 
9 We calculate premature deaths avoided by multiplying the attributable fraction (calculated from the relative risk, 
evaluated using the parameter estimates for the hazard function given in the Burnett et al (2018) appendix), 
population incidence of these diseases and the exposed population (see Ostro 2004). We take the population of 
Delhi to be 19,438,678 and use the 2011 Census to calculate the percentage of the population above the age of 25 
in Delhi. Information on the population incidence of these diseases is taken from India specific data on the Global 
Health Data Exchange (http://ghdx.healthdata.org/gbd-results-tool). Appendix II has more details on how these 
deaths were calculated.  

http://ghdx.healthdata.org/gbd-results-tool
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Table 2: Premature Deaths from Congestion 

 

Ideally, we would only use data on the population within the grid cells where we have 

information on traffic flow and pollution concentration. As we lack such spatially fine data, we 

calculate deaths from all of Delhi’s population implying our estimates are an upper bound of 

the actual deaths avoided. It is also possible that since we cannot account for all the ways 

congestion could impact deaths, our estimates could be potentially a lower bound. 

We can see these mortality reductions are large: to put these numbers in context, Pandey 

et al (2021) find that in 2019 a total of 16,595 premature deaths in Delhi could be attributed to 

ambient particulate matter pollution. Therefore, extreme congestion events lead to premature 

deaths by somewhere between 19% and 33% of the total deaths from particulate matter.10 

Pricing congestion explicitly is therefore likely to bring significant gains. 

Section VII: Possible Threats to Identification  

Although we are confident of our identification of PM 2.5 concentrations arising from 

traffic congestion, there is a subtlety to the interpretation of our results. It is not clear whether 

our results pin down traffic congestion resulting from a squeeze on the existing road transport 

infrastructure, or traffic congestion resulting from other reasons. Prominent among these other 

reasons is construction activity. This distinction is important. Construction of the scale required 

to severely interrupt vehicle movement is likely to be a one-time event whereas inadequate 

road infrastructure is a more long-term concern, leading to questions of possible substitution 

toward public transport or increased expansion of the current network. If construction projects 

are really the underlying reason for traffic congestion, our estimates do not imply a long-term 

mortality cost.  

 
10 We include the entire population of Delhi in our calculations, so we assume extreme congestion events have 
similar impacts regardless of location within the city. 

  Point Estimate of the impact of congestion on PM 2.5: 20 

Implied mortality:   

Chronic Obstructive Pulmonary Disease 3149 

Ischemic Heart Disease 5417 
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To get past this problem, we use an instrumental variables strategy. We construct our 

instruments for travel times in the following way. The Delhi Traffic Police runs a twitter account 

where they make regular announcements of travel alerts. Using machine learning techniques, 

which are described in Appendix I, we use the text within the tweets to classify the tweet as a 

type I or type II congestion event, with a type II event denoting higher congestion. If either the 

origin or destination ward is affected by a type I congestion event, the instrument takes a value 

of one; if both origin and destination ward is affected by a type I congestion event the 

instrument takes a value of 2; and the instrument equals 0 otherwise. A similar definition uses 

type II congestion events.  

Figure 7 below plots a time series graph, showing the total number of trips that had at 

least one type I congestion event on any given day. Because a single ward can enter multiple 

trips as either an origin or destination ward, a type I congestion event in one ward can affect 

several trips. We can see two big spikes – in the months of July and August as well as in January. 

January 26th happens to be Republic Day in India, a major national holiday with many roads 

closed partially or wholly in the center of the city in the weeks preceding a parade held in the 

heart of the city. The other major national holiday is August 15th, the day India became an 

independent country. Monsoon rains hit Delhi during July and August, causing roads to flood, 

and slowing traffic. Figure 7 tells us there is significant variation in traffic congestion events 

across time.  



 

 

    22 

 

 

Figure 7: Tweet Activity over Time (Source: Delhi Traffic Police Twitter account, own calculations) 

Spatial variation in congestion events is shown in Figure 8. Red dots refer to type I 

congestion events, green dots refer to type II congestion events and yellow represent those 

events we could not classify. These dots are reasonably spread out over the entire city 

suggesting significant variation in the probability of congestion events across origin and 

destination wards. Table 3 below shows examples of these three types of congestion events.  
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Figure 8: Spatial Variation in Tweets, by Congestion Event (Source: Delhi Traffic Police Twitter account, Own 
Calculations) 

Table 3: The Three Types of Congestion Events 

Tweet Congestion Event 

“Due to the work of Metro, traffic from Shyamlal 
College to Bihari Colony (Road No 57) will be 
high, sorry for the inconvenience.” 

Type I 

“In front of Lajpat Nagar police station, MTNL 
Vallo has dug a hole. There is a hindrance in 
traffic.” 

Unclassified 

“Break down DTC bus No. DL1PC8733 has been 
removed from Kalkaji near foot over bridge. 
Traffic is normal now.” 

Type II 

Source: Delhi Traffic Police Twitter Account, Own Calculation 

We are currently working on defining these instruments for upwind wards. 

Section VIII: Preliminary Conclusions 

In this paper, we estimate the relationship between pollution and traffic congestion. 

Taking travel times as our measure of congestion, which is equivalent to inverse speed – a 

common measure of congestion – when trip fixed effects are included, we find pollution is 

statistically significantly affected by congestion. Further the impact is both non-linear – rising 
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sharply for extreme congestion events - and dynamic, sustaining for many hours after an 

extreme congestion event. Health benefits in the long term from increased congestion 

regulation are large. Our preferred interpretation of these estimates of congestion is that they 

represent the number and type of vehicles interacting with existing transport infrastructure. 

Given these results, a congestion pricing scheme would appear to have significant benefits. 

To the extent that some commuters can substitute between time of day when deciding their 

commutes, if the appropriate congestion price is put in place, it will encourage such 

substitution. The health benefits alone appear to be large enough to justify further work 

examining what a congestion pricing scheme might look like. Note we have explicitly ignored 

the loss in welfare that comes from waiting in traffic. Incorporating this concern will only 

further make the case for congestion pricing. 

A potential concern with congestion pricing, which should be considered when designing 

such a scheme, is how easy would it be to evade paying the price. For instance, a toll road can 

be avoided by taking alternative, if longer, routes. In theory, one could track each car and 

legally mandate each car owner to have such a device. Technologically this is feasible but raises 

important issues of privacy. It might perhaps be more effective to subsidise traveling during 

certain times rather than raise prices during congested times.   
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Appendix I: Tweet Classification Using Hierarchical Clustering 
 

The document corpus consisted of the translated text of 6690 tweets posted by the 

Delhi Traffic Police using a Twitter handle called "dtptraffic" which is dedicated to traffic 

alerts. The tweets were pre-processed by removing punctuations, special characters, urls 

and numbers. 

The goal of clustering was to partition the tweet corpus into classes each of which 

maps to either "type I" or “type II". We take a supervised classification approach in which 

parameters   were tweaked until clusters were achieved which match a priori knowledge 

about the dataset. 

Manual Extraction of Categories 

We examined the 50 most frequent words in the corpus - having removed punctuations 
and special characters - which is shown in Appendix Figure 1 below. 
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Appendix Figure 1: 50 most frequent words  
 

We then manually extracted the following categories from the list of frequent words. 
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1. Extremely frequent words (traffic, alert, due): words that occur more than 10000 

times in the corpus 

2. Place words (road, market, carriageway, station, gate, bridge, route, stretch, 

flyover): words that tie an alert to a generic place in a given location. 

3. Address words (chowk, marg, sansad, metro, moti, bagh, ashram, delhi, nagar, 

azad, vihar. dhoula, kuan): words that locate the tweet at a specific addressable 

location. These are the geocoding key words. 

4. Event words (breakdown, obstruction, water, logging, removed, demonstration, 

truck, broken, pwd, bus, ongoing): words that describe events that potentially 

affect traffic. 

5. Traffic Condition words (closed, affected, heavy, normal, running, remain): words 

that describe traffic conditions 

Appendix Table 1 summarizes what kind of information each of these categories of words conveys. 
 

Appendix Table 1: Word categories 

Category What it tells us 

Extremely Frequent Words Not too meaningful since they occur in 

almost every tweet 

Place words Where is the tweet located? (generic 
location) 

Address words Where is the tweet located? (specific 
location) 

Event words What kind of traffic event has occurred or is 
occurring? 

Traffic condition words What is traffic like right now or will be in 

the near future? 

  
From the categories manually extracted, extremely frequent words like "traffic" and 

"alert" do not convey meaningful information since they occur in almost every tweet. Place 

and location words convey information about where the tweet is located and therefore, 

they are not meaningful in the context of trying to find out what the tweet is reporting 

regarding the traffic condition. To know what traffic is like we have to look at "traffic 

condition words" like "heavy", "affected", "normal" etc. These are the most meaningful 

words for the purpose of clustering tweets into high and low congestion classes. 

Additionally, event words are also meaningful because they contain the causes of traffic 
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conditions. We therefore removed extremely frequent words, place words and address 

words from the corpus and kept only event words and traffic condition words in order to 

perform clustering. 

 

Term Frequency vs Term-Document Frequency 

The term frequency of a given term is the number of times it is used in the corpus and the 

term-document frequency is the number of documents (tweets, in our case) in which it 

appears. Appendix Figure 2 shows the term frequency (n) of common terms in the corpus 

plotted against its term-document frequency (numTweets). 

 
 

Appendix Figure 2: Term-Document Frequency (numTweets) against Term Frequency (n) 

Each term appears roughly once per tweet since its frequency is approximately the 

same as its term-document frequency. That means that we are able to characterize tweets 

by single words or combinations of single words. Next, I manually classified the words in 

the two selected categories - traffic condition words and event words - depending on 

whether they are associated with high congestion or low/normal congestion. The results 



 

 

    31 

 

are shown in Appendix Table 2. 

 
Appendix Table 2: Word associations with Type I and Type II congestion 

Category Type I Congestion Type II Congestion 

Traffic Condition Words heavy, affected, 

inconvenience, congestion, 

interrupted, reported, 

obstruction 

normal, diverted 

Event Words breakdown, bus, ongoing, 

water, truck , broken, 

demonstration, pwd, 

logging, procession, htv, 

construction, leakage, 

accident, waterlogging, 

sewer, pipeline, break, 

underway, elevated 

removed, closed 

 

Term-Document Matrix 

We construct a term-document matrix each row of which corresponds to a term and 

each column to a tweet. If term 𝑖 is present in tweet 𝑗 then the element (𝑖, 𝑗) of the term-

document matrix is 1 and it is zero if term 𝑖 is not present in tweet 𝑗. We then trim the 

matrix down to remove terms that occur in less than 1% of the tweets which is roughly 7 

tweets. This step is important because it reduces dimensionality of the term-document 

matrix but also may lose some important terms which will cause misclassification or non-

classification of certain tweets. A distance matrix is computed from the term document 

matrix which contains in the (𝑖, 𝑗)th element, a similarity measured based on Euclidean 

distance between the terms 𝑖 and 𝑗. This distance matrix is used as a basis for Ward's 

agglomerative hierarchical clustering method using a minimum variance method (Ward, 

1963) that clusters terms together at each iteration by minimizing the error sum of 

squares. 

Initially, each tweet is assigned to its own cluster and then the algorithm proceeds 

iteratively, at each stage joining the two most similar clusters, continuing until there is just 

a single cluster. At each stage distances between clusters are recomputed by the Lance-

Williams dissimilarity update. Ward's minimum variance criterion minimizes the total 



 

 

    32 

 

within-cluster variance. At each step it finds the pair of clusters that leads to minimum 

increase in total within-cluster variance after merging. This increase is a weighted squared 

distance between cluster centers. At the initial step, all clusters are singletons (clusters 

containing a single point). To apply a recursive algorithm under this objective function, the 

initial distance between individual objects must be (proportional to) squared Euclidean 

distance. The initial cluster distances in Ward's minimum variance method are therefore 

defined to be the squared Euclidean distance between points (Wikipedia, 2020): 

𝑑𝑖𝑗 = 𝑑({𝑋𝑖}, {𝑋𝑗}) = ‖𝑋𝑖 − 𝑋𝑗‖
2
 

Appendix Figure 3 shows the term clusters obtained with the following 

parameters. The sparsity threshold is set 0.01 (that is, remove terms which 

occur in less than 1% of the tweets) and the total number of clusters, 𝑘 = 13. 

These parameters were manually tweaked to arrive at a set of meaningful clusters. 
 

Appendix Figure 3: Term clusters, Sparsity Threshold = 0.01, k = 13, Ward's Clustering Method 

 
 
 

The above clusters were used along with the word association matrix to arrive at the 

classifications shown in Appendix Table 3. Not all clusters are meaningful. 
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Appendix Table 3: Clusters and Congestion Event Classification 

Cluster 

Number 

Terms Contained in Cluster Interpretation Congestion 

1 will, remain  -  - 

2 work, ongoing, pwd Ongoing public works Type I 

3 normal, now Traffic is normal now Type II 

4 affected, water logging Traffic affected due to water 

logging 

Type I 

5 removed Traffic obstruction removed Type II 

6 movement, 

closed, 

demonstration 

Traffic movement is closed 

due to a demonstration 

Type II 

7 going, running, dlpc, 

inconvenience, sorry, 

procession, waterlogging, 

reported, congestion, 

causing, open, interrupted, 

please, using, diverted, htv, 

leading, pipeline, leakage, 

sewer, construction, coming, 

use, alternate, take, 

motorists, advised, accident, 

new, break, regretted, 

broken, truck 

A variety of traffic events 

that cause congestion or 

interruptions 

Type I 

8 heavy Traffic is heavy Type I 

9 avoid, kindly Motorists advised to avoid 

route due to congestion 

- 

10 towards - - 

11 Bus Traffic events related to 

buses 

- 

12 breakdown A breakdown that is 

impacting traffic 

Type I 

13 obstruction Presence of a traffic 

obstruction 

Type I 
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The above table can be further simplified by removing common words like "now", 

"towards" and "please. Once that is done, the simplified table then leads to the simple 

classification algorithm below: 

 
1. Do for all tweets 

2. If the tweet contains any of the groups of words from clusters 3,5,6, 

classify it as type II 

3. If the tweet does not contain any of the word groups from clusters 3,5,6 

and it contains any of the words from the remaining clusters, classify it as type I 

 

 

 

 

 

 

 



 

 

    35 

 

Appendix Table 4: Summary Statistics for the Main Sample 

 Source Observations Mean  Standard Deviation Min  Max 

Trip Time (Seconds) Uber 37,367 1471 500 157 4706 

Pollutants       
PM 2.5 (Micrograms/M3) CPCB* 31,140 117 102 0 4084 

PM 10 (Micrograms/M3) CPCB 28,875 241 157 0 1324 

NOx (Micrograms/M3) CPCB 30,618 1.4 1.6 0 48.2 

CO (Miligrams/M3) CPCB 31,668 63 69 0 960 

Weather        
Rain (mm) ERA5+ 16,188 0.6 2.1 0 22.8 

Temperature (Celcius) ERA5 16,188 24 8 6 43 

Net Solar Radiation (Joules/M2) ERA5 16,188 1.3E+07 5.4E+06 7.6E+05 2.4E+07 

Dew Point (Celcius) ERA5 16,188 13 7 0 27 
Estimates for the year 2018, for the city of Delhi. Sample restricted to wards and times where data on tweets from the Delhi Traffic Police are non-missing.  
*: CPCB refers to the Central Pollution Control Board. +: ERA5 refers to the ERA5-Land dataset from Copernicus Climate Change Service.  
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Appendix II: Calculating deaths avoided  
 

Ostro (2004) suggests the following method to calculate deaths from air pollution: 
 
D = AF * PI * EP 
 
Where D equals deaths, AF is the attributable fraction from a specific mortality cause, PI is the 
population incidence of the mortality cause and EP is the exposed population. 
 
To calculate the attributable fraction, we use the transformation: 
 
AF = (RR – 1)/RR 
 
Where RR is the relative risk from a mortality cause. This is evaluated using the hazard ratio 
formulation from Burnett et al (2018): 
 

Hazard from a mortality cause = 𝑒𝑥𝑝
θlog(z/α+1)

(1+exp{−(z−µ)/ν})
 where 𝑧 equals the reduction in pollution 

from a transport congestion policy, 𝜃, 𝛼, 𝜇 and 𝜈 are parameters that control the shape of the 
hazard function. We take the parameters specific to the cohort data that includes the Chinese 
male cohort for the age group 25 and over from Burnett et al (2018) appendix Table S2.  
 
The population incidence of the two mortality causes is taken from India specific data on the 
Global Health Data Exchange (http://ghdx.healthdata.org/gbd-results-tool). 
 
To calculate the exposed population we take the total population of Delhi in 2018, and multiply 
this by the proportion of the population over the age of 25 (this percentage is taken from the 
2011 Census and equals 52%). Note that the eventual exposed population is smaller than this 
number because ideally, we should only use the population that lies in the downwind cells – 
however we lack data at this spatial level. Therefore, our calculation of deaths avoided is an 
upper bound.  
 

 

http://ghdx.healthdata.org/gbd-results-tool

